
ROA-AIII 41. AIR FORCE INST OF.TECH WRIOT-PAT1ERSON AFS 0ON SCHOO-flC F/6 9/9
SYSTE04 RELIABILITY$ A MICROCOMPUJTER SOLUTION TECHI&I E U)
DEC 51 D Rt TIROS

2NLSSFE AflT/flflflflfl lf lll

iD 1..1 1.8 125

1111 25 -Iii

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURAU OF STANDARDS 1963 A

I .

SECURITY CLASSIFICATION OF T4IS PAGE (When Date Enlered)

REPORT DOCUMENT'AIlOV" PAGE READ INSTRUCTIONS
RE PBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/ IGOR/OS/81D-9*

4. TIvLE (and Subtitlu) 0 5. TYPE OF REPORT & PERIOD COVERED

SYSTEM RELIABILITY:
A MICROCOMPUTER SOLUTION TECHNIQUE 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Air Force Institute of Technology (AFIT/'EN)
Wright-Patterson AFB, Ohio, 454 3 3

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

ICONTROLLING OFFICE NAME AND ADDRESS '~'- 12. REPORT DATE

*December 1981
~' 13. NUMBER OF PAGES

I. MONITORING AGENCY NAME
"

& ADD RESS("dj'er~t; Controlitng Office) 15. SECURITY CL ASS. (ol this repot)

Unclassified
IS&. DECLASIFICATIOIDOWNGRADING

SCHEDULE

16. DISTRIbUTION STATEMENT (of this Report)

Approved for public release: di'stribution unlimited.

17. EASTRIPUTION STATEMENT (ol the abstract entered in Block 20, It differen: from Report) ,

28 JAN ..2

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and ldentify by block num~ber). *.--- -

Clomputer program
Reliability "
Graphics
Pascal
Microcomputer
20. ABSTRACT (Contlnu,, on reverse side if necessary and Identify by blout num'ber)

This study investigates the feasibility of using a microcomputer
to calculate system reliabilities. The computer program, written
in Pascal on an Apple II computer, uses interactive graphics to

Sallow a user to manipulate a system of components. The components
are limited to a constant reliability in parallel and series
structures. Once a caJ.culaticn has been maaie, the user carn thei-
reconfigure the system and recalculate the reliability. This
technique may provide insights to how the system reliability

D FORM 1473 ErITION OF I NOV 65 IS OBSOLETE

-. / "" SECURITY CLASSIFICATION OF THIS PAGE (Ahen Pet. Enterei

S-, I ",

SECURITY CLASSIFICATION OF THIS PAGE(WI7,m Does Entered)

changes as components are changed.
The appendices include the system configuration, User's Guide,

Programmer's Guide, and program listing.

V-4

SECURITY CLASSIFICATIO10 OF T-1 PAGVONIn Dots Emted)

AF IT/8OR/06/8lD-9

SYSTEM RELIABILITY:

A MICROCOMPUTER SOLUTION TECHNIQ1UE

THES IS

AFIT/S0R/OS/81D-9 Donald R Turos, Jr.
Captain USAF

Approved for public releases distribution unlimited

S2 02 18 108

AFIT/GOR/O8/B1D-9

Thesis

SYSTEM RELIABILITY:
A M I CROCOMPUTER SOLUT I ON TECHN I QUE

by

Donald R. Turos, Jr.

Captain USAF

Prepared in partial
fulfillment of the
requirements for a
Masters Degree

December 1981

School of Engineering
Air Force Institute of Technology
Wright-Patterson Air Force Base

Ohio

Approved for public release: distribution unlimited

I wish to thank my advisor, MaJor Daniel Fox, whose

patience allowed me the flexibility to overcome my own

procrastination and enable me to complete this effort.

I sincerely hope that being a member of a division

championship team In both intramural softball and football

is enough for the successful completion of my athletic

scholarship.

Finally, only a good working relationship with a great

group of GOR's and an understanding and supportive wife

could have made my stay at AFIT so bearable.

This study investigates the feasibility of using a

microcomputer to calculate system reliabilities. ,he

computer program, written in Pascal on an Apple II

computer, uses interactive graphics to allow a user to

manipulate a system of components. The components are

limited to a constant reliability in parallel and series

structures. Once a calculation has been made, the user can

then reconfigure the system and recalculate the

reliability. This technique may provide insights to how

the system reliability changes as components are changed.

The appendices include the system configuration,

User's Guide, Programmer's Guide, and program listingyk

ii

Prefaceii

Abstract..........

List of Figures.................... v

1.* Introduction................... 1

Background................... 1
Topic Area................. 1
Related Research............. . .~ o 2

Study Overview 5
Objectives................. 5
Scope/Limitations.. 5

2. Methodology 8

Program Overview. B
Capabilities........................ 8
Data Structure................9
Program Structure...............11

Segments 13
Basic~sUnit.................14
Initialize Segment.............16
Edit Segment...............17
Analyze Segment.....................19
Executive Routine. 19

3. Results.......................21

Validation.............................21
Conclusions........................24
Problems.......................... 25
Extensions 27

Bibliography 30

Appendix 1: System Configuration

Appendix 2: User's Guide

Appendix 3s Programmer'*s Guide

Appendix As Program Listing

iv

LA St gj FjgurLD%

1. Reliability Equations 2

1. Component Configurations for Validation . . . % . 22

2. Prototype Configuration for Validation.......23

v

SYSTEM RELI ADLITY:

I Introduction

System reliability is a major question for a wide

variety of people and concerns. It is easy to imagine a

need for reliability calculations, without access to a

machine that could provide the answer or where time to do

the calculations by hand is not available. In the past,

the large scale computer facility could provide such

support for a specific, preprogrammed problems, but very

often this support was not available to a small scale

operation. Any needed computations would have to be

carried out by hand: a tedious and error prone process at

best. This study is an attempt to fill the gap by using an

inexpensive microcomputer to provide an automated solution

technique to the system reliability problem.

BackqRomnd

Topic Area. The main topic area, reliability theory,

has received a reasonable amount of research attention.

The area of interest important to this study lies with the

work done with parallel and series structures of

components. The mathematical equations used for

determining the reliability of a system of components with

known reliabilities are well documented in any number of

_1

sources; Hillier and Lieberman (Ref 6) provide a reasonable

discussion of these equations. Figure I presents the form

of the reliability equations. This study will automate the

evaluation of these equations to provide the reliability

calculations f or a user defined system of Components.

Parallel = 1 - (1-R 1)(1-R 2) (1-R n)

Series = R1x R2x ... xRn

where R.i is the individual component reliability.

Figure 1. Reliability Equations

Related Research. Related areas of interest i nvo , Ive

the choice of a microcomputer, graphic subsystem and

language to support the study; then the application of the

technology to provide a useful tool. Any of the many

microcomputers on the market today could have been used to

support this study. A decision was made to write the

program in a standardized, high level programming language

to allow the results to be used on as many different

machines as possible. Machine availability was also a

constraint, an Apple II was readily available. This

particular microcomputer supports both Fortran and Pascal.

The Apple machine was a good choice for two other reasonsi

the Apple II is widely availabile, and the UCSD Pascal

2

system supported by the Apple is becoming an industry

standard (Ref 1O:v).

The Pascal language was designed to aid the beginning

programmer in learning programming techniques while

affording the advanced programmer the power of an Algol

like, block-structured language. Examples of block

strctures are IF-THEN-ELSE, DO-WHILE, CASE-OF,

REPEAT-UNTIL, and procedures. These structures of the

language readily provide for self documenting code. Two

important features of Pascal are the flexible data

structures and recursion. Data flexibility allows the user

to structre the data in the most convient form, depending

on the desired objective; for example, minimum amount of

memory per element, computation speed, access speed, or

even readability. Recursion, calling a routine from within

that routine, is very important aspect of reducing the code

needed to handle problems, especially if the data can be

structured to be handled by recursive routines. Two

specific applications of both of these techniques will be

discussed in Chapter 3. An excellent discussion of Pascal

is provided by Jensen and Wirth (Ref 7). The

Turtlegraphics subsystem of UCSD Pascal has been

implemented for the Apple and supports all of the protocols

of the UCSD Pascal System, thus providing the designer with

a great deal of power and flexibility on the graphics

screen. An excellent discussion of the Apple

3

implementation of the UCSD Pascal Operating System is

provided by Lewis (Ref 10). The specific configuration of

the Apple 11 system used for this study can be found in

Appendix 1.

Several other areas were also explored before design

of the program started. The first area was that of circuit

theory (Ref 1, 5, 8). The computer has been used in

several applications for generating circuits using graphics

capability. Most applications are closed loop in nature

and would not fit in with the network structure of the

reliability system. The applications are most useful for

circuit layout and positioning, but this would not be the

case for this design.

The second area explored concerned algorithms designed

to find the shortest path or K shortest paths through a

network (Ref 9, 12, 16). Other algorithms dealt with

finding the most reliable route and the N most vital links

(Ref 13, 17). These articles most often were designed to

aid the user performing manual calculations, The purpose

of this program is to automate these calculations. Further

search of the literature was abandoned as no specifics for

the topic as applied to automated calcution using

interactive graphics were found.

4

Stud verview

_tctivst . The objective of this study is to

determine the feasibility of using a microcomputer for

interactive reliability systems generation and calculation.

Through making use of the graphics capability of the

microcomputer, the user can view a representation of the

system as it is generated. Success in meeting these

objectives rely on the software providing the results of

the user's input within a reasonable time . This time

should not exceed a maximum of several seconds to preclude

user dissatisfaction and abandonment of the system.

Soe-LiMitations. The scope of this study will be

limited to reliability systems with independent components

and constant component reliabilities. The first assumption

insures that each component reliability is not affected by

any other component. This condition must be met to use the

deterministic equations to solve for the system

reliability. Because of this condition, the relaxation of

this assumption is impossible for this study. The

independence assumption is reasonable for a large portion

of the reliability field. However, some of the work done

in reliability theory concerns dependent components and is

the way a significant number of real world systems behave.

The second assumption is convenient for a feasibility study

as many real world systems may be approximated in this

fashion. This limitation may indeed be relaxed to allow

5

the reliability of any or all components to be a function

of time. This is discussed in Chapter 3 as a possible

extension to a more general solution of the system

reliability problem.

Several other limitations exist. The intent of these

limitations is not to limit the form of the system, but to

provide reasonable limits for a feasibility study. In

actual use, these limits could be easily changed to suit a

specific user's requirements. An arbitrary limit of 100

components located on a 20 by 20 grid has been set for the

study, Any single component may be in parallel with a

maximum of six other structures. Any input series

structure is limited to a maximum of eight components. The

reliability of any individual component will be displayed

as a two digit rounded percentage, but the program will

allow an eight digit input reliability while the Apple

system can maintain a maximum of 32 bits (approximately 7

significant digits) of accuracy for real numbers (Ref 3, pg

85). The program is not yet able to interface with a mass

storage device, thus the saving of a generated system is

not supported; this will also be discussed as a program

extension. The program is interfaced with a printer to

allow for a representation the generated system to be

printed. This feature uses a standard 80 column printer

format.

6

Hardware limitations also exist. The Apple allows for

a matrix of 280 (horizontal) by 192 (vertical) addressable

dots on the graphics screen. Thus the graphics capability

only allows for a maximium of a 10 by 10 grid of components

to be reasonably displayed at any one time. The Apple

Pascal system has a limited amount of memory (44K 8 bit

bytes) available for use by the programmer. This amount is

reduced to 34K when using the graphics screen. The amount

is not a critical limit, as the Pascal system allows the

programmer to segment the code to fit the available space.

This is at the cost of execution speed because the system

must interact with the mass storage device to overlay the

active code into memory. An intermediate version of the

code did not require segmentation; but in the interest of

follow on program modification, a decision was made to

segment the progrqm into four logical parts to insure

memory was available for modifications and extensions. The

time delays introduced by segmentation are not significant,

as they occur at normal break points in the operation of

the program.

7

This chapter will provide an overview of the system

reliability program. The topics to be discussed will be

system capabilities, data structures, and rationale for

segmentation. Finally, there will be a discussion of each

main program segment, focusing on the procedures and the

underlying algorithms. The discussion will be general in

nature as the specifics of operation may be found in

Appendix 2, the User's Guide, while the specifics of the

program may be found in Appendix 3, the Programmer's Guide.

Prog ram Overview

PaRailities. The capabilities of the progam allow a

user, with minimal knowledge of reliability, to generate a

system of parallel and series structures, edit the system

to user satisfaction, and calculate the reliability of the

system. After each calculation the user has the option of

obtaining a hard copy a representation of the system. The

user may then edit the system to calculate the reliability

of a slightly different configuration. This edit

capability allows a user to conveniently perform online

sensitivity analysis. The user may then reinitialize the

system grid and construct a new system.

The program design allows for easy changes in

capabilities. The limits, grid size and the number of

components in the grid and each structure, are coded as

Pascal constants. Thus, the data grid and data structures

can be modified by simply chanqing several constants and

then recompiling the program. There are several procedures

that currently contain no active code; this is to provide

for future extensions. The desired code can be inserted

into the procedure stubs because the existing structure

already provides for the implementation of the extensions.

Data Structure. The data types available in Pascal

are very flexible and can be adapted to meet almost any

need. They are available in two different types,

unstructured and structured. The unstructured types are

constants and variables used in a program. These are very

simple and are discussed in Appendix 3, the Programmer's

Buide.

This program makes use of two of the structured types:

the record and the array. The record structure, called a

node in the program, was configured to hold the data for

each component. Associated with each node is a pointer

that is the starting location for the record in memory.

Each node contains pointers to the next, the previous, and

the parallel components to the component represented by the

node. Each node also contains the component's integer grid

(ordered pair) location, a two character identification

tag, and a real number representing the component

reliability. Each node can use up to fourteen words of

memory depending on system constants. The current

configuration uses twelve words per node. This memory is

9

dynamically allocated when a new node is inserted into the

grid by the user. A maximium of 2500 words of dynamic

storage is available to the user (Ref 4, pg 255), thus a

realistic limit to the number of nodes is less than 200.

The array structure, called IJPUS in the program,

provides the grid into which the components are inserted.

The IJPOS array contains the pointer to the node that

contains the data for the component at any (1,J) grid

location. The grid is sized by two constants: one for the

number of columns and the other for the number of rows.

The program makes all checks for the grid boundaries

against the constants, thus the user may configure the grid

to any rectangular shape. The minimum suggested is a 10 by

10 grid because this is the maximum that can be displayed

on the screen at one time. The maximum should be limited

by the number of nodes needed in any direction, but the

upper limit of about 200 active nodes must be kept in mind.

The 20 by 20 grid currently employed works nicely for a

variety of small scale systems and effectively demonstrates

the capabilties of the program.

In practice, the grid system is really not limited to

a maximum of 200 nodes. The user can always construct

subsystems and calculate their reliabilities, then use each

of those subsystems as a component in a macro-system. This

type of application is limited only by the user's

imagination and stamina.

10

ftrogram §t tt- The program has been divided into

four sections, each operating under the control of the

executive routine. Of the four sections, three are segment

procedures and the fourth is an intrinsic unit. A segment

procedure is an independent, self contained procedure that

only refers to the procedure that called it. An intrinsic

unit is a group of user written procedures that any program

can use, and is located in the System Library file. The

System Library file contains special purpose system

provided functions and procedures such as trigonometric

functions, math functions, graphic routines, and any other

special purpose type routines in addition to any user

written routines. The three segment procedures and the

executive routine compromise the main program and are

compiled into a single code file. The intrinsic unit,

named Basics, is compiled separately and then inserted into

the System Library file. This strategy was taken for two

reasons: first, the Apple only has a limited amount of

space to build the text file that will be later compiled

into a code file; second, the Apple only has a limited

amount of memory for the loading and execution of a code

file.

The first reason comes from the fact that the Apple

Pascal editor has room for only 18400 bytes of information

(Ref 4, pg 98). This limits a programmer to between 600

and 800 lines of text in the editor at any time. The

11

program contains about 1600 lines of text, excluding

comments, thus there was a need to break the program into

pieces. During prelimenary coding, this problem was solved

using a technique that split part of the code into the

intrinsic unit. This division split the program into two

main sections and reduced the compilation time of the main

program, because an intrinsic unit is compiled separately.

The limitation on text file size can also be overcome by

using the compiler INCLUDE option. This option allows the

programmer to signal the compiler to go to another text

file and compile that code and then return to the current

text file and finish compiling the rest of the program.

This option was used to break the main program's 1100 line

text file into three pieces: one containing the executive

routine and the edit segment, one containing the initialize

segment, and one containing the analyze segment. This

technique was not needed for the Basics unit, since that

text file can fit into the editor.

The second reason, limited memory for execution, was

aslo solved with the solution to the limited editor

capability. The main program's three sections were made

into segment procedures. This option of the Pascal system

overlays the segment's code into memory only when a routine

from that segment is active. The optimal choice for

segmentation dictates that the segments be independent and

infrequently exchanged. The choice of segments abided by

12

that rule. The initialize segment is only used to set up

the grid and the display, and then is discarded. The edit

segment performs both the system generation and edit

functions and is the largest segment. The analyze segment

performs the reliability calculations and outputs the

system to a printer. The edit segment and the analyze

segment are only exchanged when the user wants to calculate

a reliability. The time spent overlaying either procedure

is minimal and is completed as the next prompt is displayed

on the screen. The time delay is short because a

substantial amount of the routines needed by the edit

segment are in the Basics unit; this makes the size of the

edit segment smaller, thus making the time needed to

overlay that segment into memory shorter.

A final reason, documentation, while not critical to

the program operation, is an important consideration for

the programmer and user of the system. The top-down

structuring allows for the above type modifications without

loss of continuity in the program. This structure also

allows for searching only a portion of the code for an

error. Other benefits include leaving procedure stubs to

be completed later and easy reading and locating of any

portion of code.

Segments

This section will discuss the specific procedures and

structure of the Basics unit, the initialization segment,

13

the edit segment, the analyze segment, and finally the

executive routine.

Basics Unit. The Basics unit contains four important

subparts: the global variables, general use procedures,

display procedures, and cursor component movement

procedures. The global variables include the system

constants, the two structured types, and the system

variables. All of these items are available to all

procedures; each procedure may also declare variables that

are only active within that procedure. The global

variables serve as the communications links between the

major segments and the Basics unit.

The second part of the Basics unit is the general

purpose routines. These routines are used by at least two

different major segments, thus are placed in this common

area to avoid duplication. The routines include all of the

procedures used to interact with the user on the console

and the procedure needed to define a new node. None of the

procedures are unique and many could be used in any program

that needs to interact with a user via the text screen or

graphics screen of the Apple. Several of the routines were

borrowed from the sample programs provided with the Apple

Pascal System. Those routines are specifically mentioned

in the computer code and the Programmer's Guide.

The third part of the Basics unit contains the display

procedures used specifically by the edit segment. These

14

procedures are designed to operate under any of the

possible configurations of the system constants. Two of

the functions are used to determine the X and Y location of

a specific component on the graphic screen window. One

routine determines the 10 by 10 subgrid that will be

displayed at any one time. This routine is invoked if the

component cursor moves out of the currently displayed

subgrid. The two most important routines are used to

display an individual component in either white on black or

black on white and the entire system. The system display

routine uses the component display routine to place each

component into the window. The routine then draws the line

to the highest parallel component in tie window (this

component has not yet been drawn), and then draws the line

over and down (if necessary) to the next component. This

procedure is repeated until all components in the current

window are displayed. The procedure is quite fast, a

typical screen is displayed in 3 to 5 seconds. The delay

provides the user some time to plan his next addition.

The final part of the Basics unit contains the two

procedures used to move the cursor up and down, and left

and right on the screen. These procedures ar- also used

exclusively by the edit segment.

The Basics unit is a special case because it is a

complete program except for an executive routine. The main

program serves as the executive. As such, the unit needs

to be recompiled only if there is a change to any routines

or constants. The code is then linked into the system

library using the system librarian package. The main

program does not have to recompiled if there is a change to

the Basics unit and likewise the Basics unit does not have

to be recompiled when the main program is changed. The

main program can be nonexistant when the Basics unit is

compiled because the two parts are linked only when the

main program is compiled or executed. This feature allows

the programmer to deal with only half the code at any one

time; if the procedures in the Basics unit are fully

operational the unit will remain static while

experimentation and change occurs in the main program.

Specifics on using the system librarian package to insert

the unit into the system library can be found in Appendix

3, the Programmer's Guide.

Initialize Segment. The initialize segment contains

the routines needed to prepare the program for operation

and allow several default parameters to be changed. This

segment is also executed if the user wants to clear the

system grid and start working on a new problem. This

segment is also responsible for preparing the instructions

on the text screen that the user can display if help is

needed on a program command. This segment also contains

the procedure stub that will eventually interface with a

mass storage device to provide for reading an old

16

reliability system back into memory. The segment allows

the user to change the default reliability used in defining

new nodes and also allows the user to turn the automatic

labeling option on or off.

Edit Segment. The edit segment contains the

procedures needed to generate and edit the reliability

system. The generate section includes the procedures to

generate a parallel and series structures and to label a

component. The edit section includes the procedures to

remove or change a component and control the cursor, which

is the current component. The executive part of this

segment selects the generation sequence, if data does not

exist in the grid, or the edit sequence, if the grid

contains data.

The generation sequence uses recursive calls to the

parallel and series procedures. The user begins the

sequence by choosing the original structure of the system,

either parallel or series. The program then displays that

structure and locates the cursor component at the first

component in the structure. The user is then asked to

either label the component or change the component into the

other structure. The program inserts the new structure or

labels the com ionent and continues to prompt until the

structure is finished. The program then returns to the

second component of the original structure and repeats the

process until the entire system is completed. The program

17

then enters the edit sequence.

Once in the edit sequence, components can be changed,

removed or added. The quit option allows the user to exit[to the main program executive routine which then allows a

transfer to any of the three segments. The user can toggle

the labeling option and change the default reliability.

The generation sequence can be entered by using the change

option. The procedures in this segment are relatively

straight forward and easy to follow once the notion of

recursion is understood. Simply stated recursion is the

act of calling a procedure from within itself or calling a

procedure that called the procedure now executing. The

Apple Pascal system fully supports this feature of the UICSD

Pascal system, and allows the programmer a great deal of

power from a relatively few number of procedures while

providing for the linking of all the recursive steps

automatical-ly.

Analygg ggfnt. The final segment is the analyze

segment, which controls the reliability calculation and

provides the interface to the output devices. This segment

also uses recursion to implement the mathematical equations

to cailculate the reliability of the system. This sequence

starts at the first component and calls the multiply

procedure. If the component is in parallel with any

structures, the procedure to analyze a parallel structure

is invoked. This procedure must recursively call the

procedure to analyze a series structure because a parallel

structure is made up of series components. The series

procedure recursively calls the multiply procedure to

calculate the series reliabilities. The multiply procedure

combines the results of the parallel structure with the

original component and then procedes to the next series

structure. Recursion allows three relatively simply

procedures to be able to reduce any system no matter how

complex. This ease is also aided by the structure of the

data and the grid it resides in. The speed at which the

reliability of a moderate sized system (50 components) can

be calculated is no more than a few seconds.

The second function of the analyze segment is the

interaction with external devices. The primary device is a

printer. The grid will be printed out in 10 by 10 blocks

in a standard 80 column format. This routine can easi., be

modified for 132 column output. The oroceoure t- store a

reliability system to disk is not provlood but a procedure

stub exists for this purpose.

Executive Routine. The executve routine is very

simple as it must provide only for the switching between

the various procedure segments, which all have their own

executive routines which function in the same manner. This

executive sequence is basically the same for all segments

and is as follows:

19

1. The display is updated.

2. The menu is presented.

3. A command is selected.

4. The command is executed.

5. Repeat until the exit command is selected.

The executive routine exists in the main program text

file along with the edit segment. When this file is

compiled, the correct version of the Basics unit must exist

in the system library or the compilation will fail. It is

at compilation time that the initialize and analyze segment

text files are included and compiled with the main program

text file into the single main program code file.

20

III Results

This chapter will cover the validation of the

computerization of the reliability equations, the

conclusions drawn about the system's feasibility, the major

problems encountered, and several extensions to enhance the

system.

Validation

The validation of the computerized reliability

equations is an important part of the study. The method of

validation chosen was to enumerate the possible

combinations and configurations of components on a small

scale and insure that the computed reliability equaled the

hand calculated reliability. This strategy was selected

for two reasons: first, recursion insures that the same

sequence is used to compute the reliability of a

configuration no matter where it is in the system; and

second, hand calculation, as has been mentioned, is tedious

and error prone procedure. A constant reliability of 0.5

made the hand calculations simpler, but effectively tested

the sequence of computations the program must carry out.

Simple series and parallel structures were tested first;

after verifing the computations, more complicated

structures were tested. Thus the hand calculations were

kept to a reasonable limit. The configurations used are

depicted in Figure 2.

21

Ri = .5

=.25

- Y- - o0 = .125 ..75 = .875

=.375 J IL .625

JII~ .=.4375 J I =.5625

=.5 313 =.5313

.3672.X- = .6719

Figure 2. Component Configurations for Validation.

22

i.5

R. = .5

=.1114

Figure 3. Prototype Configuration for Validation.

A single large system was configured and a reliability

was calculated. The computed number agreed with the number

calculated very carefully by hand. This prototype

configuration is presented in Figure 3. The calculation

changed appropriately when the component reliabilities were

adjusted. The program was also tested usint. the possible

extreme values of 0.0 and 1.0 resulting in no errors. The

strength of the tests performed indicate that the program

does perform the reliability calculations correctly.

23

Conc lusion*

Several conclusions can be drawn from this study.

First, and foremost, this program shows that a

microcomputer can indeed be used to interactively generate

reliability systems and then calculate the reliability of

the system. The use of the graphics capability allows the

user the ability to visualize and then build and change the

system interactively on the console. The actual

implementation is not important; it is the power and

flexibilty that an interactive system provides that was the

underlying issue of this study.

Second, the microcomputer is a powerful and useful

tool -- useful in a wide range of applications. The study

has shown that a microcomputer can handle a complex problem

with relative ease. The available graphics allow a very

user oriented display of the reliability system.

Third, the UCSD Pascal System as implemented on the

Apple 11 System is a very powerful and useful tool for a

programmer and user of microcomputer systems. This system

offers most of the scientific computing power of Fortran

less exponentiation with the block-structuring of Algol and

the self-documenting feature of Cobol. The operating

system allows the programmer and user a great many options

and flexibility. The power of the segmenting and

overlaying capabilities are shown because the program,

which taken as a single piece could not fit into the

.24

available memory, can execute with a surplus of space.

Finally, the most important conclusion is that

microcomputer systems can be used to handle complex

problems in a highly desirable fashion -- interactively.

The power of this avenue of approach to any problem can not

be overemphasized. A well written program can be used as a

powerful aide to a manager or technician that does not have

the time to manually tackle a problem.

Problems

Several problems were encountered during the course of

the study. A class of problems was computer implementation

dependent and as such, the discussion can be found in

Appendix 3. The first major problem to be encountered was

the limited size of the system editor. This problem was

solved by using the compiler INCLUDE option and then

dividing the program into several parts with no harmful

effects. Editing four different pieces of code can be

cumbersome but the Pascal Operating System allows for

smooth transitions and storage. The floppy diskettes can

be unreliable, a single instance of data retieval error

occured in several months of operation. The operating

system allows for duplicating diskettes before an

unrecoverable error can occur. The user must make at least

one backup copy to prevent the catastrophic loss of a

complete diskette, as disk units have been know to fail.

25

A second problem concerned the graphics capability of

the Apple System. The design of the individual component

and the hardware combined to limit the display of only a 10

by 10 grid of components. This is only a quarter of the

possible grid. The solution rested on software to

automatically keep only the portion of the grid that the

user is working with on the screen. This strategy causes

the screen to shift radically if the grid is sparse because

the cursor component shifts large distances as the user

moves through the grid. The addition of a position prompt

of the current component, that is on the screen at all

times, relieves most of the confusion that can result from

the computer's attempt to display the grid.

A final problem, that was really a limitation of the

system, was the amount of time needed to compile the

program. The compile process takes about five minutes for

the Basics unit and about eight minutes for the main

program. This was an annoyance when working but was

probably a small price to pay. This was the only drawback

to the Pascal operating system; the processor can only

compile 150 lines per minute (Ref 3, pg 88), the more lines

the longer it takes. This inconvience must be put .into

perspective: batch turn around for a large scale computer

is normally several minutes but can take days depending on

the work load and the environment. Even in an interactive

environment, the user may spend an inordinate amount of

26

time waiting for a listing at a production control window.

The longest the microcomputer will ever take is a few

minutes. This inconvenience happened only during

development as the program was constantly being recompiled,

the user will normally execute the compiled code unless a

change must be made.

Exftensions

Two major extensions will be discussed in this

section, several other minor changes are mentioned in

Appendix 3. The first extension is the addition of the

routines to store and retrieve data to a mass storage

device. This was not accomplished because the original

program design precluded having a node for every grid

location in memory at the same time. This design allowed

flexibility in dealing with the limited amount of memory.

The program currently executes with a surplus of memory,

thus the extensions should be attempted.

The strategy could be one of combining the IJPOS grid1 array and the node records into a single structure - a two

dimensional array of record. The pointer can then be

changed to a (1,J) address in the grid. Once the new

structure has data in it, input or output to mass storage

is very easy: read or write the individual records. The

difficulty lies in sizing the static array (about 12 words

per node) to fit into the available memory, approximately

6000 words minus the amount needed for the largest code

27

segment. This sizing can force only a limited size system

at a time, but the storage capability coupled with the

decomposition of the reliability system may counterbalance

the negative effect. This option requires the revision of

every reference using % puinter to using an ordered pair

address; this will be a very time consuming and tedious

effort, but the results may very well be worth the effort.

This method implies a static array of nodes but another

method is available.

In this second option, the record structure could add

a single pointer to be the location in memory of the node.

The pointer would only be used to allocate or deallocate

the memory needed for the node. This option would preserve

the efficient use of the dynamic memory available, yet

still allow for a simple interface to the mass storage

device.

The second extension would allow the individual

component reliabilities to be a function of time. This

could be implemented by providing the program with several

probability distribution functions, such as the Wiebel or

Exponential that could be used to model the reliability.

The identification label could be used to indicate that the

relibility is a function of time and the reliability could

be used as the function's parameter. An alternate solution

would use the ability to declare variable record formats;

thus one type for a constant reliability and another type

28

f or the different functions allowed, since some arm

characterized by more than one parameter. The anatyze

segment could be modified to to ask for the duration and

interval desired for the resulting system reliability; then

the analysis routines could call the appropriate function

(one could be a constant) for the reliability using the

current time and parameter set for each component in the

normal sequence. The reliability calculations could be

saved for each interval and then plotted on a graph of the

system reliability versus time using each interval

calculation as a data point. The number of functions will

probably not be limited by memory size because the analyze

segment is smaller than the edit segment. This extension

can remove a restriction that forces an assumption to be

made that lim its the analysis that can be conducted on many

real world problems being investigated using this program.

29

1. Albrecht. "Evaluating Systems Reliability", J.E
SRV~tEV,I~'4 3 - 7 (Aug 1978).

2.e A 11r Reference Manual. Apple Computer Inc-., 1979.

3. ftl Pascal Language Rference Manual. Apple Computer
Inc., 1980.-

4. ARUIe Pascal gating System Reference Manual. Apple
Computer Inc., 1980.

5. Bell. "Computer Aids For Reliability Prediction And
Spares Provisioning", Elecroni c Communi cation54z
136-42 (1979).

6. Hillier, Fredrick S., and Gerald J. Lieberman.
"Chapter 14: Reliability", Introduction to Opea ions
Research, 3rd ed. San Francisco: Holden-Day Inc.,
1980.

7. Jensen, Kathleen, and Niklaus Wirth. PASCAL User
Manual and RegorEt, 2nd ed. New York: Springer-Verlag,
1975.

S. Klingman. "NETGEN, For Generating Large-Scale Network
Problems", Mangement Science, 20:814-21.

9. Lawler. "Computing The K Best Solutions", L!S~g~iment

10. Lewis, Theodore Syle. Pascal Programing For The
A2Rle. Reston, VA: Reston Publishing Co. Inc., 1981.

11. Ostroski. "Run System Studies on a Microcomputer",
Electronics World, 190:56-7 (Oct 1, 1978).

12. Pollack. "The Kth Best Route", Qgeragtions Retsearch.9.
578-80.

13. Ratliff4. "Finding The N Most Vital Links", Mangement

14. Rondeau. "Short-Cut Reliability Analysis", L~ggtine
Desig!3,52,108-12 (Sep 21, 1978).

30

15. Shogan. "Reliability of a Stochastic Network",
QRSggtions Researgh.24:1027-44.

16. Shorack. "Most Reliable Route Algorithm', gpLv!@io r
Research, 12:832-3.

17. Yen. "Finding The K Shortest Loopless Paths",
Managgment Science, 17: 712-6.

SYSTEM-CONFIGSURAT ION

Appendix I

tsty ECofiuiQuration

1. Apple II Plus with 48K memory

2. RAM card with 16k memory (required) (slot 0)

3. Apple Disk II (2) with controller card (slot 6)

4. Printer with controller card (slot 1)

5. Color TV with RF modulator

Alternatives

1. Apple II with 48K memory (48k minimum)

2. Any number of disk drives (1 minimum)

3. Any printer with controller (not required)

4. Any 80 column or lower case card (slot 3)

5. Any video monitor

1 Appendix 1

agpgndix 2

USER'SGUIDE

Appendix 2

Overview

This User's guide is a discussion of the System

Reliability program. This guide covers the general system,

the set up process, the initializing process, the editing

process, and the analyzing process. A quick reference

command list, segment interaction chart, and example

session are also provided. This guide should be used in

conjunction with the Apple Pascal Operating System Manual

and the System Reliability Programmer's Guide.

11 Appendix 2

Overview

Usger's Guide . 1

General Information . .

Start Up.......................3

Single Drive...................3

Dual Drive....................3

Initializing.....................4

Editing.......................5

Generate.....................6

Edit.......................7

Analyzing.......................9

Main Menu.......................10

Ouick Reference Command List..............11

Segment Interaction Chart................12

Example Session.....................13

iii Appendix 2

User's Guide

This User's Guide will take the form of a structured

walk through the workings of the program. The guide will

be operational in nature and focus on the options the user

may employ along with an explanation of the menu choices.

The explanation of the inner workings of the program can be

found in Appendix 3, the Programmer's Guide. The User's

guide will address the following topics: general

information, start up, initializing, editing, analyzing,

and the main menu. This guide assumes a rudimentary

knowledge of the Apple Pascal Operating System; a

familiarity with the System and FILER commands is

necessary. The guide can be read through as the user

practices with the program or beforehand as a program

familiarization step. The quick reference command chart

provides a list of all available commands. The segment

interaction chart provides a map of the paths available to

the user. The example session is a tutorial on the program

functions and commands.

General Information

The program will allow the user to place up to 100

components on a 20 by 20 grid. The individual component

will be represented by a 2 character identification label

above a 2 digit rounded reliability percentage. This

1 Appendix 2

component will be connected to other components using

straight lines. The display will be constructed from left

to right and bottom to top. The screen will either contain

text information or a display of a 10 by 10 portion of the

reliability grid. The bottom display line will be used to

communicate information to and elicit responses from the

user.

The program will ring the buzzer if an error has

occured. A single sound indicates that the input character

is not allowed from that menu. The corrective action is to

reread the menu or use the <ESC> key to display the

available commands. Two buzzes indicate that the limits of

the grid have been exceeded. This means that a particular

column or row has grown to large and no more components can

fit, or an attempt has been made to put more than six

components in parallel. In either case, the program will

automatically insert as many of the components as is

possible, the excess will be ignored. If no room exists

then the program will offer the only option that can be

successful completed. If the the maximum number of

components is exceeded the program will remind the user

each time an attempt is made to add a new component, but

will not terminate the program. The limit is currently set

at 100 but there is memory available for at least 200

components. This value can be changed; see the

Programmer's Guide for specific details.

2 Appendix 2

Stact Ug

This progiram requires an Apple II with 48K of memory

and a language or expansion RAM (Random Access Memory) card

installed in slot zero, a single disk drive with controller

card installed in slot six, and an appropriate monitor or

television and modulator. A printer with interface card

installed in slot one and a second disk drive attached to

the controller card in slot six may also be used. If the

Apple has the shift key modification, then select the

normal keyboard (shift m generates a <] > right square

bracket). The user must insure that the correct library

exists on the boot diskette. The SYSTEM.LIBRARY file must

contain 45 sectors, if it does not or you suspect the file

is not correct, please refer to the Programmer's Guide for

specific instructions. Depending on the number of disk

drives available, the start up procedure varies slightly.

Once either procedure has been accomplished, the user can

then EXECUTE the SYSREL.CODE file, and the initializing

process will begin.

Sinjge Drive. The single drive user must insure that

the SYSREL.CODE file is on the boot diskette. If it is

not, the FILER must be used to transfer the file from the

WORK: diskette to the APPLEI: diskette (boot diskette).

Dual Drive. The dual drive user must only insure that

the APPLE1: diskette (boot diskette) is in drive 1 and that

the WORK: diskette is in drive 2.

3 Appendix 2

Initializing

The initializing process is the first segment of the

program to be encountered, and as such it informs the user

about some general program limitations and functions, and

enables the user to change program default values. An

important piece of information is that the current.

component the program is working on is displayed as white

letters on a black background; any other components are

displayed as black letters on a white background. The

current component will also be refered to as the cursor

component.

Two important key stroke commands are also mentioned:

the <ESC> (escape) key will display a quick reference

command list, and the < <- > (left arrow or backspace) key

will let the user change a selected command. The left

arrow key allows the user to reenter a mistaken command

choice for multiple keystroke entries (examples are P#,

SO); the function will not work if the command is only a

singl4 key stroke (examples are E, C), other means are

available to stop the commanded action.

After reading the information the user can then select

the <RETURN> key to change the default values or any other

key to continue the initializing process. Changing the

defaults simply involves answering the questions. The

autolabelling option is normally turned on and the default

component reliability is 0.5. The user is now asked if

4 Appendix 2

data resides on disk; this function is not yet implemented

so either answer will cause the program to finish the

initializing process.

If the user reenters the initializing process from the

main menu, pressing the <ESC> key returns the user to the

main menu without clearing the current reliability grid.

Any other choice will erase whatever system had been

constructed by causing the program to reinitialize. The

rest of the process will be repeated as before, then the

user automatically enters the generate sequence of the

editing process.

Editinq

The editing process consists of two sequences:

generate and edit. The generate sequence is entered

automatically when the initializing process is complete.

At the completion of a generate sequence, the edit sequence

is initiated. This entire process may also be initiated

from the main menu. A generate sequence may be started

from the edit sequence. The * symbol is used to indicate a

single digit input is required to complete the command.

The numbers in the lower left corner of the display

indicate the row and column of the current component. This

information is displayed at all times and is designed as an

aide in keeping tract of the user's location in the grid.

5 Appendix 2

Generate. The generate sequence allows the user to

create a reliability system. The generate menuallows the

user to insert a P)arallel structure with * components, a

S)eries structure with 41 components, LUabel a component

with an identification label and reliability, or move to

the N)ext component in the structure. The current

component limit for a parallel structure is six, whilethe

current limit for a series structure is eight. These

limits may be changed; see the Programmer's Guide for

specific procedures. This process of inserting and adding

components continues until the user has visited each

component at least once. If the component does not have to

be changed into a parallel or series structure, or the user

is satisfied with the label, the N)ext command may be used

to advance the cursor component. The program automatically

advances to the next component after any other command.

It is important to note that the user' s initial

command choice, parallel or series, will determine the

structure of the final system. This choice has a

significant impact on the reliability of the system. if

the user chooses the parallel command then the system will

consist of *1 structures in parallel with each other. if

the user chooses the series command then the system will

consist of #1 structures in series with each other. This

basic arrangement is unalterable; the system would have to

be reinitialized to change the arrangement. In either

6 Appendix 2

case, the structures may be very complex, but will still

have the basic pattern. Based on this information, the

suggestion is offered that the user choose a series

structure as the first command until the capabilities of

the program are understood. Any excess components can be

later removed from the system by the edit sequence. A

series component can also be effectively eliminated from

the structure by setting the reliability to 1.0, while a

parallel component can be effectively eliminated from the

structure by setting the reliability to 0.0. At the

completion of the generate sequence, the edit sequence is

automatically initiated.

Edit. The edit sequence is entered automatically from

a generate sequence or can be entered from the main menu.

This sequence enables the user to change the system that

has been placed on the grid. The edit menu allows the user

to R)emove a component, C)hange a component or the

defaults, move the cursor, or Q)uit and return to the main

menu to procede to the analyze segment.

The R)emove command will attempt to remove a component

from the grid; the routine is not very sophisticated and

therefore can not handle all possible cases. The details

of the command restrictions are discussed in the

Programmer's Guide in the Internal Section: Main Program,

REMOVE procedure.

7 Appendix 2

II I ... fl r I I ml i

The C)hange command displays the change menu which

allows the user to start a generate sequence by using the

P)arallel or S)eries command, L)abel a component, or change

the defaults by using the T)oggle command to turn the

autolabelling option on or off, and the D)efault command to

change the component reliability default. The Q)uit

command returns the user to the edit menu after the use of

the T)oggle or D)efault commands, or if the C)hange command

was inadvertantly selected. The program automatically

returns to the edit menu after the completion of the

P)arallel, S)eries or L)abel commands.

The cursor movement commands allow the user to move

from component to component to make editing changes. The

command keys were selected because they closely resemble a

diamond shape on the keyboard. The positions in the

diamond represent the direction the cursor will move: I and

M force the cursor up and down respectively, while J and K

force the cursor left and right respectively. The

direction is followed by the number of grid locations to

shift. The program will allow movement out of the

currently displayed subgrid and then present a new section

of the grid with the target component centered. The

maximum input allowed is a 9. If no component exists at

the target location, the program checks either side for a

component; if a target still does not exist, th program

reduces the shift amount and tries again until a target

8 Appendix 2

component is found. The H)ome command will position the

cursor at the lower left corner of the grid with the

corresponding quadrant of the grid di alayed.

The Q)uit command will return the user to the main

menu. This command can be used with the cursor in any

position. The <ESC> key will display a quick reference

list of all of t he available commands. The left arrow < <-

> key functions to change a command that requires more than

a single character entry. After exiting the editing

process, the user can then select the main menu A)nalyze

command in order to calculate the system reliability.

aljyzing. All of the analyzing process options are

initiated from the main menu. The A)nalyze command will

cause the program to calculate the reliability of the

system currently on the grid. A short pause can be

expected while the calculations are progressing. The

answer will be displayed and the <RETURN> key will call the

print routine while any other key will return the user to

the main menu. The P)rint command will begin the process

of printing a forma'tted representation of the grid on a

piece of paper. The routine places each component in its

grid location with the row and column of the component, the

row and column of the forward linked component, and the row

and column of the backward linked component; the row of the

parallel linked components; and the component reliability.

The user must insure the printer is on and ready to accept

9 Appendix 2

data. The analyze routine may be called from the print

routine. The S)tore command will initiate the process of

saving the grid on a diskette file but is not currently

implemented.

Main Menu. The main. menu commands allow the user to

select which process will be initiated next. The commands

are for the E)dit process, the A)nalyze process, or the

l)nitialize process. The P)rint and S)tore commmands are

part of the analyzing process but are selected from the

main menu. As suggested by the command names, each

selection places the user under the control of the

specified process. The Q)uit command will cause the

program to terminate and place the user in the Pascal

Operating System command line.

The program is designed to allow the user to alternate

between the E)dit process and the A)nalyze process at will.

This facility allows the user to rapidly reconfigure a

reliability system, calculate its reliability and then

iterate the process as many times as is required.

10 Appendix 2

Quick Reference Command List

tain Menu Commands

E)dit Process

Editing CommandS

Generate Sequence
P)arallel Structure
S)eries Structure
LUabel Component
N)ext Component

Edit Sequence
R)emove Component
CMhange Component

P) arall1el Structure
S)eries Structure
LUabel Component
T)oggle autolabelling on or off
D)efault Reliability
Q)uit Change

I or MI - cursor up or down
J or K - cursor left or right
H) ome
O)uit Edit Process

A)nalyze grid reliability

Ability to print grid

P)rint grid to paper

Ability to analyze grid

S)tore grid to disk

IDnitialize Process

Wuit program

ii Appendix 2

Sgment interaction Chart

ENTRY

INITIALIZE
SEGMENT

ANAL PRITSTR
GRID GDADAT

AAYSEGMENT

EXITT

12 Appendix 2

ExamnR Session

This example session contains a very simple system to

present some of the commands of the program in a structured

environment. The user must experiment with the prpqram to

make it do the things that are of special interest. The

example will recreate the system depicted in Figure 1.

-3298

Figure 1. Example System

The example will be discussed exactly as the program will

execute, thus the user should be doing the commands on the

computer as this example is being read.

1. The first step is to insert the APPLEI: diskette

into drive 1 and the WORK: diskette into drive 2. The

Apple should then be turned on and the drives will operate,

finally displaying the UCSD Operating System command line.

In response to this the user should now EXECUTE the

13 Appendix 2

WORK:SYSREL file and the system reliability program will

begin to execute.

2. The user will first see the specific program

information. Take time to read all of the comments as they

are important to the correct operation of the program.

After reading the comments, hit any key to continu~e with

the program. The program now asks if the user has data

stored on disk. Respond no to this question as the routine

has' not yet been implemented. The drive will again operate

as the program starts the initializing process and display

an appropriate message. At the completion of the

initialization the program will display the generate

sequence menu.

3. The user can now start to build the system

depicted in Figure 1. The first step is to notice that the

system is basically three structures in series. The first

response is S3. The program now displays a three component

series structure with the first component as the current

component (white on black). Now, the first structure of

the series is basically three structures in parallel, thus

the second response is P3. The lowest component of the

parallel structure is two components in series, so the next

command is S2. The lowest structure is now complete so two

N commands are used to move the cursor to the second

element of the parallel structure. This structure is

basically two structures in series so the next command is

14 Appendix 2

S2. Now use a P2 command and two N commands, twice, to

change the two series components into parallel structures

and move the cursor to the top parallel structure. The

last stucture of the parallel structure is a series

structure so use a S2 command to finish the last structure

and two N commands to move to the second component of the

original series structure. Use another N command to move

on to the last component in the series as the second is not

to be changed. The last component is a simple parallel

structure, so use a P3 command to finish the system. The

generate sequence must now be exited so use three N

commands to start the edit sequence.

4. The edit menu is now displayed, but the system is

complete so use the QUIT command to exit to the main menu.

Once in the main menu the ANALYZE command can now be used

to calculate the system reliability. This process takes a

few seconds and the program displays an appropriate

message. The calculations are completed and displayed to

the screen, reliability is .3298. Not being finished, use

the space bar to return to the main menu. Once in the main

main, the user can now return to the EDIT sequence to

change the system.

5. Once back in the edit sequence, the user can now

use a K2 command to move to the lone series component to

change its reliability. Use the CHANGE command to enter

that menu and then select the LABEL command and change the

15 Appendix 2

component's reliability to .9, which the display

automatically updates. Now use a KI and 13 commands to

move to the third component in the simple parallel

structure. Use the REMOVE command to delete this component

from the system. Again the display is automatically

updated. Use the QUIT command to return to the main menu

to analyze the new configuration.

8. Use the ANALYZE command to again calculate the

reliability, which is now computed at .5089. This number

should make intuitive sense as the .5 reliability was

changed to a .9 reliability but a triple parallel structure

was reduced to a double parallel structure somewhat

negating the effect of the reliability change. Again use

the space bar to return back to the main menu and then

enter the edit sequence.

7. Use a K(2 comlmand to move over to the single series

component. Use the CHANGE command and the select the

DEFAULT command and change the default reliability to .9.

Now, use a P4 command to change the single component into a

simple quadruple parallel structure. Four N commands must

be used to return to the edit menu. Now select the QUIT

command to again return to the main menu to analyze the

reliability. The reliability is now ..5654 and this is a

final form of the system. So, insure the printer is turned

on and use the <RETURN> key to print a copy of the system

to paper. If no printer is connected to your system just

16 Appendix 2

return to the main menu. Once the printer is finished use

the QUIT command to exit the program. The final version of

the system is depicted in Figure 2.

Note. This is a very small example, the user must

feel free to experiment and use all of the commands to

become familiar with them. The program offers numerous

ways to cancel a command if a wrong choice was selected.

No example can depict all of the facets of a system, only

usage can teach the full range of capabilities.

1O11 fb= .5654

Figure 2. Final System

17 Appendix 2

ARRgoijx 3

PROGRAtmfl S @gUIDE

Appondix 3

Overview

This Programmer's Guide will provide general

information on the program and diskettes. Specific detail

of the external operation of the program will include the

editing, compiling and linking of the program segments.

Specific detail of the internal workings of the program

will include the Basics unit and all program segments.

This guide should be used with a Pascal reference and the

Apple Pascal Language Reference Manual.

This guide contains Appendix A, the program listing.

ii Appendix 3

Now.=

Ove'rviewv . ii

Programmer's Guido . 1

Program Detail . I
Notation 3
Diskette Detail.....................3
Required Familiarity.................4

External Section.....................5

Main Program.....................5
Editing........................5
Compiling.....................5

Basics Unit.....................6
Editing........................6
Compiling.....................7
Linking......................7

Internal Section: Basics Unit................9

Structure.......................9
Constants......................10
Types.........................t
Variables......................11
Data Structures...................13
Routines.......................14

CRT........................14
BACKUP.......................15
GETANS.......................15
GETSTR......................15
GETREL......................15
DISPLAYAT.....................15
INSTRUCT.....................16
AUTOLAB......................16
INITNODE.....................16
XPOS.......................16
YPOs........................17
CHECKUIS.....................16
DCOMPON.......................17
DISPLAY.................. 17
POSITION.....................18
UPDOWN........................18
LEFTRIGHT.....................18

iii Appendix 3

Table of Contents

Internal Section: Mlain Program............ 19

Executive........................19

Initialize Segment..................20

Executive......................20
BETCRT........................20
PROtIPTAT.......................21
INTRO........................21
INITDISPLAY.....................21
GETDATA.......................21
INFO.........................21

Edit Segment.....................21

Executive......................22
LALE........................22
PARALLEL......................23
SERIES........................24
REMOVE........................24
DEFAULT.......................25
CHANE........................25

Anal yze Segment.....................25

ANALYZE.......................26
PRINT........................26
STORDATA......................27

Procedure Hierarchy Chart................28

Appendix A: Program Listing

iv Appendix 3

ftoggmmer's Guide

The Programmer's Guide is for use if the program must

be changed or recompiled, or if the user desires an indepth

knowledge of the internal program structure. This guide

will begin with some general information and comments about

the program. The rest of the guide is divided into three

sections: external, internal, and program listing. The

external section will discuss the external operation of the

program. The topics will include editing and compiling of

the main program; and editing, compiling, and linking of

the Basics unit. The internal section will discuss

internal workings of the program. The topics will include

the Basics unit and each segment of the main program,

executive, initialize, edit, and analyze. The program

listing section will include a procedure hierarchy chart

along with an annotated listing of the program.

E~ggram Detail. This program has been divided into

two major portions: the main program and the Basics unit.

This division occured because the Pascal editor can only

handle about a maximum of 800 lines of code. The Basics

unit is compiled separately and is then linked into the

system library file. A change to the unit does not require

a recompilation of the main program. The unit contains all

of the global constants and variables, data structures,

general purpose routines, and display routines. Once the

1 Appen~dix 3

proga trseeuig h oecnandi h nti
always resident in memory.

The main program has also been divided into three

s egments. This division occured f or two
reasons: editorIlimitations and memory limitations. The solution 'provided

an answer to both limitations. The three program segments

do not have to be in memory at the same time because they

perform independent functions. Each time their function is

required, that segment of code is overlayed into memory and

executed. The overlaying process takes no more than a few

seconds and is accomplished at normal program break points.

The source file for each segment also resides in a

different text file; the files are compiled together into a

single code file when the executive routine is compiled by

using the compiler INCLUDE option. This allows a portion

of a text file to exist as a separate text file, then at

compilation time a single line in the main text file

instructs the compiler to include the named file in this

compilation. A change to the main program does not require

the recompilation of the unit, but does require a current

version of the unit to exist in the system library before a

recompilation could be attempted. A change to any one of

the segments would require recompiling the entire main

program. The INCLUDE line must completely specify the file

volume and name.

2 Appendix 3

The program has borrowed from the example programs

provided in the Apple Pascal Language Reference Manual.

The specific routines are mentioned when discussed and in

the program listing.

Notation. There has also been a change in the

standard notation convention in the program. The

reliability grid displayed by the program is dimensioned by

an ordered pair (1,J). Any reference to I or the first

dimension of the array IJPaS is to the column in the grid,

while any reference to J or the second dimension of IJPOS

is to the row in the grid. This convention is not normal

(I normally indicates a row) but was noticed too late to

change. The tedious precedure of reindexing was not

considered worth the effort but may be accomplished by any

enterprising programmer. The change could be made with a

minimum of effort when the extension for the alternate data

structure is attempted.

Diskette Detail. All the files discussed in this

guide reside on the WORK: diskette. This diskette should

be used as the source for all code; when changes are made,

the files should be updated to reflect the changes. The

WORKB: diskette is the WORK: diskette backup, it contains a

copy of all of the files on the WORK: diskette. Once an

updated version of the program is executing correctly and

all the updated files are on the WORK: diskette, the WORKBs

diskette should then be updated. In this fashion, only the

3 Appendix 3

most recent change can be lost if the boot dikette is lost

as the WORK: diskette is constantly being updated. If the

WORK: diskette is damaged or lost, or the programmer has

made an untraceable error, the WORKB: diskette can serve as

backup, thus losing only the most recent test version of

the program. To preclude the ultimate disaster, the WORKB:

diskette should be stored separately.

Reguired Familiarity. This guide is written for a

user who is familiar with the Apple implementation of the

UCSD Pascal Operating System. The Apple Pascal Operating

Reference Manual and the Apple Pascal Language Reference

Manuals are necessary for complete understanding of the

concepts and procedures used and discussed in this guide.

The beginning user may also find Pascal Programming for the

Apgg by Lewis (Ref 10) to be very useful. The advanced

user and the Pascal programmer will find PASCAL User Manual

too Rg2oEt by Jensen and Wirth (Ref 7) to be a complete

reference.

4 Appendix 3

External Section

The external section will detail the process the user

must go through to change and recompile the main program,

and the slightly different process used to change,

recompile, and relink the Basics unit. This discussion

will assume that the user has a dual drive system.

Main ProgEam

The division of the main program into three text files

makes editing and compiling unusual. The peculiarities of

each will be discussed separately.

Editing. The editing process is the normal for each

individual text file. Each text file has its own name,

INITSEG and ANALSEG; the edit segment is contained in the

main program file SYSREL. Each file can be edited and

saved to any disk file in the normal fashion. The major

differences occur during compiling.

C9MRniling. The compiling process is different because

of the INCLUDE option. To use the include option, the user

must completely specify the file name to be included. A

copy of the INITSES and ANALSEG files should be transferred

to the APPLE2: diskette with the compiler because the

INCLUDE option specifies the volume for these files as

APPLE2:. This makes recompilation very easy. The APPLE2:

diskette with the compiler and the include files

INITSEG.TEXT and ANALSEG.TEXT should be placed in drive 2.

5 Appendix 3

The APPLE1: diskette should be in drive 1 with the

SYSREL.TEXT file as that file name or the SYSTEM.WRK.TEXT

file along with the SYSTEM.LIBRARY file that contains the

Basics unit. The work file or text file is then compiled

normally. The compiler will go to the APPLE2: diskette and

include the two separate segment text files when instructed

to by the INCLUDE option in the main program text file.

The names or the locations of the separate segment text

files are not critical, but the specification of the file

names on the include card must be exactly right:

VOLUME:NAME.TEXT or the compilation will not work. The

INCLUDE option is discussed in Chapter 4 on pages 63 and 64

in the Apple Pascal Language Reference Manual. The current

version of the Basics unit must be linked into the system

library or the compilation will not work. The RUN option

may be used to compile and run the main program.

Basics Unit.

The process for the Basics unit is completely normal

except for using the librarian utility provided on the

APPLE3: diskette.

Editing. The editing process is normal as the entire

text file will fit into the editor. The segment numbers

chosen for this unit do not conflict with any other unit;

care must be exercised if the segment numbers are changed

to insure that there is no conflict with system provided

segments. The Apple Pascal Language Reference Manual

6 Appendix 3

discusses this point in detail in Chapter 5 on pages 76 and

77.

Gg@iling. The compilation process is also normal,

except that the RUN command should not be used because the

code file can not be executed until called by the main

program. The compilation of a unit requires that the

compilier SWAPPING option be turned on. This allows enough

room in the computer for declarations but also slows the

compilation process down. This point is discussed in

Chapter 4 on page 68 in the Apple Pascal Language Reference

Manual.

Linking. The linking process is simple to execute but

possibly hard to understand. This guide will only present

the procedure, an adequate explanation exists in the Apple

Reference Manuals and Addendum. The procedure is easiest

with the updated BASICS.CODE file on the WORK: diskette.

This Diskette also contains the files OLD.LIBRARY and

NEW.LIBRARY. These three files are accessed by the

librarian utility to link the unit into a new library file.

The user must now EXECUTE APPLE3:LIBRARY.CODE. The program

will ask for output code file, reinsert the WORK: diskette

and respond WORK:NEW.LIBRARY. The program will then ask

for a link code file, respond with WORK:OLD.LIBRARY.

Follow prompts and use the = command to link all source

slots of the old library into the same destination slots of

the new library. Now select a new link code file using the

7 Appendix 3

N command and respond WORKzBASIiS.CODE. Link slot 1 into

slot 7 and slot 2 into slot 8. Now quit the librarian

program using the 0 command and the <RETURN> command. The

NEW.LIBRARY file now contains an updated and linked-version

of the Basics unit. The SYSTEM.LIBRARY file on the APPLEI:

diskette must now be replaced by the WORK=NEW.LIBRARY file.

Once this has been accomplished the main program can be

compiled or executed. The details of the librarian utility

operation can be found in the Apple Pascal Operating System

Manual in Chapter 8 on page 187.

8 Appendix 3

Internal Sections Basics Unit

This section will discuss the internal contents of the

Basics unit. The topics will include unit structure,

constants, types, variables, and data structures along with

a discussion of each routine.

Structure. The structure of an intrinsic unit is very

regimented. A unit has four parts: a heading, an interface

part, an implementation part, and an initialization block.

The heading of the Basics unit turns the compiler SWAPPING

option on (required for all units), names the unit,

declares the unit as an intrinsic unit, and specifies the

segment numbers associated with the unit. The interface

part declares the units this unit uses, th global

constants, the global types, and the global variables the

main program will use to communicate with all other

segments and the unit. The interface part also declares

all of the routines that are contained in the unit. The

implementation part declares any local structures to the

unit; the Basics unit has none. The implementation part

also contains the body of each of the procedures or

functions contained in the unit. The last part of a unit

is an initialization block; this block is empty for the

Basics unit. A detailed discussion of units is provided in

Chapter 5 on pages 75 through 81 in the Apple Pascal

Language Reference Manual.

9 Appendix 3

Const!Its. The Basics unit declares seven constants

that serve to size the entire program. The MAXX and MAXY

constants are for the maximum X and Y positions allowed on

the graphics screen. These values should not be changed as

they are presently set to allow the maximum usable area on

the graphics screen.

The NREC, NSER, and NPAR constants control the number

of nodes allowed in the grid, the maximum number of

components in a series structure, and the maximum number of

components in a parallel structure. These constants may be

adjusted by the user to suit the need. NREC is limited by

the amount of memory available or the product of MAXI &,d

MAXJ; memory currently allows for approximately 200 nodeu.

while the grid could accept up to 400 nodes. NSER is

limited to a single digit number. The single digit

limitation is derived from the method of inputting the

command parameter. This could be changed by adjusting the

input format of the commands for parallel and series. NPAR

is also limited to a single digit number but is used to

determine how many parallel links each node must have, thus

impacting the amount of memory each node must have. The

current value of NPAR is 6, thus 6 words of memory are used

for the parallel links of each node, as each link uses a

word of memory.

10 Appendix 3

The MAXI and MAXJ constants determine the column and

row size of the reliability grid. These numbers may also

be adjusted to suit the users need. A single restriction

is that the MAXI value be I gra vr than the column size of

the grid to allow for an invisible terminal node. Any

reference to grid size excludes the extra column that the

program actually needs. The minimum values should allow

for a 10 by 10 grid; the maximum size the program can

display at any one time. The current values of 20 by 20

allow for a demonstration of all of the program

capablities.

lypes. Pascal allows the user to declare nonstandard

types to suit the programmers need and enhance self

documentation. The Basics unit declares four new types:

NODEPTR, NODE, CRTCOM, and CHARSET. The NODEPTR type

defines variables that are used to point to variables of

type NODE. The type NODE is a record data structure that

contains the information pertaining to each component. The

type CRTCOM declares the names of the variables that will

be used as console commands. The type CHARSET declares

variables that are of type SET OF CHARacter.

Variables. Pascal forces the programmer to declare

all the variables the program uses before any executable

statements of that block are compiled. Each block may have

its own variables, but they are local (in force) only in

that block or a subordinate block. Eight different types

11 Appendix 3

of global variables are declared for the program.

The INTEGER type includes ICUR, JCUR, IMAX, JMAX, and

NODES. ICUR and JCUR correspond to the column and row of

the lower left grid postion in the current display. These

values are changed as user moves though the grid, and then

are used to provide the starting position of the display.

IMAX keeps track of the rightmost column in the grid, while

JMAX keeps track of the highest row in the grid. NODES

keeps a running count of the number of nodes currently on

the grid.

The SCREENCOLOR type includes only COLOR. This

variable is used to indicate what color to draw the lines

connectir he components on the display. It is currently

set to W. I

The CHARacter type includes ANS, LAB1, and LAB2. ANS

is a single character variable that is used to pick up

keyboard inputs and transmit them to the program. LABI and

LAB2 are also single character variables and are used to

provide the letters the autolabelling procedure uses for

component labels.

The BOOLEAN type includes AUTO and DATA. AUTO is a

true or false variable that is used to indicate the status

of the autolabelling option. DATA is used to indicate the

status of the reliability grid: true indicates the grid

contains data or the data was loaded from disk and 4aL.se

indicates that the grid is empty.

12 Appendix 3

The REAL type only includes DREL. DREL is used to

contain the default reliability v.: ected by the user.

Three arrays of dif-erent .ypes are also declared.

CRTINFO is an ARRAY OF CHARacters andexed by the type

CRTCOM that contains the console commands. PREFIXED is an

ARRAY OF BOOLEAN indexed by the type CU.TLOM tnat determines

if the console command selected is prefixed by an escape

character. IJPOS is an ARRAY OF NODEPTR that will be

discussed as a data structure.

Data Structures. One type and one array serve as the

programs only data structures. The type NODE represents

each component. Each node is dynamically allocated as a

new component is defined. This method uses a minimum

amount of memory for a given size grid. The record

structure used provides pointers for a forward and backward

link, FLINK and BLINK, and NPAR parallel links in array

PLINK. I, J are the integer grid column and row location

of the component. ID1 and ID2 are the two character

variables used for the component label. REL is a real

number for the component reliability. Each link needs a

single word of storage to represent any address in memory.

I and J need only half a word to represent a integer that

can be no larger than MAXI. ID1 and ID2 need half a word

to represent a REL needs 2 words to represent a real

number. Thus, a node currently needs 12 words of memory.

This scheme could be changed by replacing the pointers with

13 Appendix 3

(I,J) grid locations to allow for storage to disk and not

change the memory requirements of each node.

The array IJPOS serves as the other data structure.

This array, as sized by MAXI and MAXJ, provides the grid of

pointers that determine the location of each of the

components. This structure could possibly be combined with

the record structure to make the disk to memory transfer a

simple task. This idea is left as a program enhancement,

which could discard the power of the dynamically allocated

scheme in favor of a static array structure losing a

substantial amount of the surplus memory avaliable for

other enhancements.

Routines

The Basics unit contains 9 general purpose routines, 6

display routines, and 2 cursor movement routines. The

display and cursor movement routines a'i edit segment

functions but are placed in the unit to balance the size of

the main program segments. The purpose of each routine

will be briefly discussed; study of the program listing of

each routine will provide the details.

CRT. The procedure CRT is used to carry out the

specified console command. This routine was borrowed from

the DISKIO program, which can be found on the Apple Pascal

system diskette APPLE3:.

14 Appendix 3

BACKUP. The procedure BACKUP is used to back the

character cursor up on either the text or display screen

depending on the option selected. This fuction enables the

back arrow key. This routine is a modified version of a

code sequence in the DISKIO program.

GETANS. The function GETANS is used to obtain a

single character input from the user. The routine will

echo the input to the text or graphics screen depending on

the option selected. The routine also knows the only

possible answers and will cycle until a correct response is

obtained. This routine is also a modified version of a

routine in the DISKIU program.

GETSTR. The procedure GETSTR is similar to GETANS and

is used to obtain string input from the user. This routine

will also echo the input to the correct screen. The

original of this routine is found in the DISKIO program.

GETREL. The function GETREL is used to change an

input string representing a real number into a real number

represented by a variable. The function manipulates real

number input strings such as .7239 into the correct

internal representation between the values of 1.0 and 0.0.

All three of the GET routines are sophisticated and deserve

close attention.

* DISPLAYAT. The procedure DISPLAYAT is used to

communicate with the user on the display screen. The

routine can clear the message area before displaying

15 Appendix 3

-JJ

depending on the option selected and can affect only a

limited portion of the message area if necessary.

INSTRUCT. The procedure INSTRUCT is used to enable

the <ESC> key to display the quick reference command list

on the text screen. The words always exist on the text

screen, the routine just switches from graphics display

screen to the text screen to show them and then back to the

unchanged reliability display.

AUTOLAB. The procedure AUTOLAB is used to

automatically label a components ID if the autolabelling

option is on. The default is on, but can be changed during

program execution from the change menu.

INITNODE. The final general purpose procedure,

INITNODE is used to initialize each node as required. The

links are appropriately set, as are the reliability and

label. The I and J positions are also set according to

input parameters.

XPOS. The function XPOS is the first of the six

display routines and is used to determine the X coordinate

of the display screen position from the value of I for the

component. This routine is scaled to provide for 10

components horizontally. Each component needs 28 dots and

there are 280 dots available horizontally. The position on

the screen is based on the current value of ICUR.

16 Appendix 3

YPOS. The function YPOS is used as XPOS to determine

the Y coordinate. This routine is scaled to provide 10

components vertically and a message area at the bottom of

the display. Each compor.ent needs 18 dots and there are

192 dots available leaving 12 dots for the message area, or

enough for more than a line of text.

CHECKDIS. The function CHECKDIS is used to check if

the cursor component has been shifted out of the displayed

grid. If outside the display, ICUR and JCUR are adjusted

to center to current component and the function is set

true. The value of the function is used to determine if

the display should be changed. This routine is used in

conjunction with DISPLAY to constantly keep the cursor

component on the displayed part of the grid.

DCOMPON. The procedure DCOMPON is used to display an

individual component in the mode selected. This routine

provides the white on black or black on white components

for the display. It is called by the DISPLAY routine.

DISPLAY. The procedure DISPLAY is used to display the

grid on the graphics screen. The routine displays the grid

starting from position (1,1). THis insures that all the

connecting lines will be displayed. The components do not

appear on the screen until the X and Y positions determined

from XPOS and YPOS routines are plottable locations for the

DCOMPON routine. This routine has two local procedures.

DEXTEND draws the line from the component being displayed

17 Appendix 3

to that components forward link. DASCEND draws the line

from the component being displayed to the highest component

that is in parallel.

POSITION. The procedure POSITION is the last display

routine and is used to display the current row and column

of the cursor component in the message area.

UPDOWN. The procedure UPDOWN is used to move the

cursor component up or down on the display grid depending

on the sign of the parameter. If no component is found at

that location the routine checks to the right and left to

find a target. If still unsuccessful the routine will move

one row vertically towards the original component and try

again. This can continue until a target or the original

component is found.

LEFTRIGHT. The procedure LEFTRIGHT is used in the

same manner as the UPDOWN routine but using horizontal

moves and checking above and below.

18 Appendix 3

Internal Section: Main Program

The main program is divided into four parts: the

executive routine, the initialize segment, the edit

segment, and the analyze segment. The executive controls

the three segments; each segment is an independent

procedure that has its own executive and procedures. This

section will discuss the executive routine and then each

segment. The segment discussion will detail that segment's

executive routine and procedures.

Executive

The executive routine is responsible for scheduling

the original -order of the segments and then controls the

main menu. The first function is nothing more than calling

the initialize segment and then calling the edit segment.

The generate sequence is executed if the user does not have

data from disk and the edit sequence is executed if the

user loaded the reliability grid with data from disk.

-Completing this task the executive routine becomes the main

menu, selecting the correct segment based on the user

input. The use of three independent segment procedures,

each with there own executive routine, has made the

operation of the main program executive very simple: the

selection of the next segment to be executed or program

termination.

19 Appendix 3

I le g

The initialize segment functions in two ways: first,

to prepare the program for operation, and second, to allow

the user to clear the grid and begin a new problem. This

segment contains six procedures.

Executive. The initialize executive routine serves

four functions. First, the GETCRT procedure is called the

first time the initialize segment is called. This

procedure determines the console commands. The option to

return to the main menu is defeated the first time.

Second, the global variables are all preset to their

defaults. Third, the defaults can be changed by the user

by selecting the correct option. And fourth, the data grid

is initialized or loaded from disk depending on user

selection. Control is then transfered back to the main

program.

GETCRT. The procedure GETCRT is used to determine the

console commands. The routine accesses the Pascal

SYSTEM.MISCINFO file for the characters used as console

commands. This file varies depending on the terminal

system connected to the Apple. This routine will read the

file for any type terminal and insure that the program has

the correct commands. The CRTINFO and PREFIXED arrays are

set to the appropriate values for use by the CRT procedure

of the Basics unit. This routine was borrowed from the

DISKIO program.

20 Appendix 3

PROMPTAT. The procedure PROMPTAT is used to position

the text screen cursor at a particular line and then write

a line of text. This routine clears the keyboard buffer to

insure the user does not type ahead. This routine was

borrowed from the DISKIO program.

INTRO. The procedure INTRO is used to display the

general system information on the text screen and present

to the user as the program begins.

INITDISPLAY. The procedure INITDISPLAY is used to

initialize the data grid array IJPOS and preset the display

screen for use by the program. The first and invisible

last nodes are inserted in their proper places to start the

reliability grid.

GETDATA. The procedure GETDATA is not yet

implemented. This routine would be used to query the user

for the disk file from which to preload the reliability

grid. This stub is provided with all the linkage necessary

to operate in the program if this routine is implemented.

INFC. The procedure INFO is the last routine of the

initialize segment and is used to write the quick reference

command list to the text screen. This list is displayed by

the INSTRUCT procedure in the BASICS unit.

Edit'Segment

The edit segment has two functions: provide for the

generate and edit sequences. All of the data manipulation

occurs in the edit segment. This segment is by far the

21 Appendix 3

largest in the program and has 16 suordinate routines.

Ectiv e . The edit executive routine must insure a

generate sequence is initiated if the data grid is empty,

otherwise only an edit sequence occurs. The generate

sequence is of the same form as the edit sequence. The

current grid is displayed with the menu and the user is

able to select a command. The generate sequence is limited

to the P)arallel, S)eries, L)abel and N)ext commands.

Completion of a generate sequence causes the edit menu to

be displayed with no change to the grid and the edit

sequence to be initiated. The full command set is now

available, R)emove, C)hange, and the cursor movement

commands, along with the Q)uit command to return to the

main menu. Both sequences use this structure: check the

cursor component for a grid change and display the change,

highlight the cursor component and update the position

information, display the menu and wait for an appropriate

command, reset the cursor component and execute the

command, repeat until the Q)uit command is selected. Each

routine that has its own menu also functions in this same

basic manner.

LaBLE. The procedure LABLE (sic) is used to input the

label and reliability for every component. The routine

interacts through the message area on the display screen

and the display changes immediately. The routine will

automatically label a component if the option is turned on.

22 Appendix 3

S MI-m mb.... IirJ

The routine converts the input string to the appropriate

internal representation. If only a <RETURN> is input then

the current value will be retained.

PARALLEL. The procedure PARALLEL is one of the

recursive pair of routines that generate the grid. This

routine has its own executive and five subordinate

procedures: ERRORPAR, ABOVEPAR, CHECKPAR, SHIFTPAR, and

INSERTPAR. The executive and routines perform in the

following fashion. First, CHECKPAR determines if the

commanded number can be input. The user hears two beeps if

this can not be done, the routine takes appropriate action

to complete the command. If no space is left the LABLE

procedure is invoked and the procedure exits to the calling

procedure. Second, ABOVEPAR allocates the amount of space

needed to complete the command. Third, CHECKPAR reduces

the amount to fit the available space and exits as in

CHECKPAR if no space is available. Fourth, SHIFTPAR

actually moves the components in the grid to make room for

the new parallel structure. Fifth, INSERTPAR is used to

place the possibly reduced amount into the grid. Finally,

the basic executive sequence with the menu of S)eries,

L)ABEL, or N)ext is executed with each inserted component

as the cursor component. The other half of the recursive

pair, SERIES, may now be called.

23 Appendix 3

SERIES. The procedure SERIES is the other half of the

recursive pair and is used to insert series structures into

the grid. The routine has an executive routine and three

subbordinate procedures: CHECKSER, SHIFTSER, and INSERTSER.

The executive and the procedures perform in the following

manner. First, the executive determines if a conflict

exists due to the commanded number. Second CHECKSER

provides error checking as in the PARALLEL routine and

exits to the calling procedure if an error can not be

resolved. Third, SHIFTSER moves the components in the grid

to provide the needed space. Fourth, INSERTSER puts the

possibly reduced number of components into the grid.

Finally, the basic executive sequence is executed with the

P)arallel, L)abel or N)ext commands for each component as

in the PARALLEL routine. The PARALLEL routine may now be

called recursively. The generate sequence alternates in

the above fashion between the PARALLEL and SERIES routines.

REMOVE. The procedure REMOVE is used to remove a

component from the grid. The routine is not very

sophisticated and as such the routine can only be used in a

certain sequence. To remove a series component, that

component must not be the first component of a series

placed in a parallel structure or the component that a

parallel structure terminates before. To remove a parallel

component, that component must a single component in

parallel with other single components and not the lowest

24 Appendix 3

component in the structure.

DEFAULT. The procedure DEFAULT is used to change to

default reliability. The input string is entered through

the display screen communication area and parsed to the

appropriate internal value and stored in the variable DREL.

If <RETURN> is the only input, the value of DREL is not

changed.

CHANGE. The procedure CHANGE serves as a submenu for

the edit sequence to provide for the commands P)arallel,

S)eries, L)abel, D)efault, and T)oggle, along with Q)uit to

return to the edit sequence menu. This routine takes the

form of a basic executive sequence. The T)oggle command is

simply switching the boolean variable AUTO from true to

false or the reverse, thus controlling the autolabelling

option. This routine will automatically exit to the edit

menu after all but the T)oggle and D)efault commands.

Analyze egment

The analyze segment has three functions: calculate the

reliability of the grid, print a representation of the grid

to paper, and store the grid to disk. This segment has a

minimal executive that echos the choice made from the main

menu for one of the three functions. This structure

eliminates the need for a separate analyze menu. The

segment contains nine subordinate procedures.

25 Appendix 3

ANALYZE. The procedure ANALYZE is used to calculate

the reliability of the system on the grid. This routine

has three subordinate routines that recursively call one

another to calculate the reliability: ANALMULT, ANALSER,

and ANALPAR. First, ANALMULT is called by the analyze

executive sequence to start the process. This routine

multiplies the next structure in series by the current

reliability. If the next structure is a parallel

structure, ANALPAR is called to provide the reliability of

that structure. ANALPAR in turn calls ANALSER to calculate

the reliability of each series structure that make up the

parallel structure. ANALSER recursively calls ANALMULT to

multiply the structures in series together. This sequence

is repeated as many times as necessary to reach the right

most component in the grid. The ANALPAR routine is the

critical part of the process and is very sophisticated in

the manner of knowing when to close a parallel structure.

The resulting reliability is displayed in the message area.

The user can then print the grid by pressing the <RETURN>

key or any other key to return to the main menu.

PRINT. The procedure PRINT uses the routines OUT and

PAROUT to print a representation of the reliability grid to

a piece of paper. The result is (1,J) grid locations of

the components, the component reliability, and the

components they are linked to and from. The analyze

routine can be called from this routine.

26 Appendix 3

STORATA.The procedure STORDATA is the counterpart

of the 6ETDATA procedure and as such is not yet

implemented. The linkage for execution has been

incorporated into the program.

27 Appendix 3

Procedure Hierarchy Chart

Main Program Basics Unit

INITSES CRT
GETCRT BACKUP
PROMPTAT GETANS
INTRO GETSTR
INI TDISPLAY GETREL
GETDATA DISPLAYAT
INwo. INSTRUCT

AUTOLAB
EDITSEG INITNODE

LABLE XPOS
PARALLEL YPOS

ERRORPAR DCOMPON
ABOVEPAR DISPLAY
CHECKPAR DEX TEND
SHIFTPAR DASCEND
INSERTPAR POSITION

SERIES UPDOWN
CHECKSER LEFTR IGHT
SHIFTSER
INSERTSER

REMOVE
DEFAULT
CHANGE

ANALSEG
ANALYZE

ANALMULT
ANALSER
ANALPAR

PRINT
OUT
PAROUT

STORDATA

28 Appendix3

aRR!!-J2 A

Appendix A

Table of -Contents

Basics Unit........................

Heading .1
Interface........................
Implementation....................1

General Pmr~ose Routines

CRT.........................3
BACKUP........................3
GETANS........................4
GETSTR........................5
GETREL........................6
DISPLAVAT......................7
INSTRUCT........................7

-AUTOLAB.........................
INITNODE.......................8

Di-SRIAY Routines

xpos............................ 9
OS.........................9

CHECKDIS........................10
DCOMPON.................... ... 11
DISPLAY........................12

DEXTEND......................12
DASCEND......................13

DISPLAY Main Body..................14
POSITION........................14

Cursor Movement Routines

UPDOWN........................15
LEFTRIGHT......................16

Initialization....................16

Mail! PggE 17

Heading.......................17

Edit Scmn

EDITSEG.........................18

LABLE........................18

ii Appendix A

Table of Contents

PARALLEL.......................19
ERRORPAR.....................19
ABOVEPAR.....................20
CHECKPAR.....................22
SHIFIPAR.....................23
INSERTPAR.....................23

PARALLEL Executive..................24
SERIES........................25

CHECKSER.....................25
SHIFTSER.....................26
INSERTSER.....................26

SERIES Executive...................27
REMOVE.......................
DEFAULT.......................28
CHANGE........................29
EDITSEG Executive 30

Generate Sequence................30
Edit Sequence...................31

Main Program Executive.................32

Initialize Segment

INITSEG.........................33
GETCRT........................33
PROMPTAT.......................34
INTRO........................34
INITDISPLAY.....................35
GETDATA.......................35
INFO.........................36
INITSEG Executive 37

ANALSEG.........................38
ANALYZE.......................38

ANALMULT.....................39
ANALSER......................39
ANALPAR......................40

ANALYZE Executive..................42
PRINT........................43

OUT........................43
PAROUT..........................43
OUT Main Body....................44

PRINT Executive...................46
STORDATA......................47
ANALSEG Executive..................41

iii Appendix A

A-AIII 429 AIR FORCE INST OF-TECH WRIGHT-PATERSON AFS OH SCHOOETC F/6 9/2
SYSTEM RELIABILITY1 A MICROCOPUTER SOLUTION TECIOUE. (U)
DCC SI D Rt TIMOS

UNCLASSIFIED AFIT/SOAIOS/10-9

11111 '-- *2 ""22
I'm IIw

111111.25 1.4. i~l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

UNIT DECLARATION BASICS UNIT

(*$S+$) ($ COMPILER SWAPPING OPTION MUST BE ON 5)

UNIT BASICS; INTRINSIC CODE 25 DATA 26;

(5 THIS UNIT CONTAINS MANY OF THE SPECIAL PURPOSE 5)

($ ROUTINES USED IN THE SYSTEM RELIABILITY PROGRAM. 5)

(8 THE PROGRAM WAS WRITTEN BY CAPT DON TUROS 5)
(5 WHILE A STUDENT AT AFIT AS A THESIS EFFORT. SOME 5)
(8 MATERIAL AND ALGORITHMS WERE BORROWED FROM EXAMPLES 5)
(5 PRESENTED IN THE APPLE 3E PASCAL OPERATING SYSTEM 5)
(5 MANUAL. SPECIFIC MODULES ARE MENTIONED IN LINE. $)

($$$$$$$55$5$$$$$$$*5$5$5$$5$5$$5$$$*555555555555555*555)

INTERFACE

USES TURTLEGRAPHICS;(5 FOR ALL GRAPHICS 5)

CONST MAXX = 279; (5 MAX X SCREEN POSITION 5)
MAXY = 191; (5 MAX Y SCREEN POSITION *)
NREC = 100; (5 USER SET * OF NODES S)

NSER = 8; (5 USER SET 4 IN SERIES S)
NPAR = 6; (5 USER SET * IN PARALLEL S)
MAXI = 21; (5 USER SET MAX COLUMNS 5)

(5 MUST BE COL+1)
MAXJ = 20; (5 USER SET MAX ROWS S)

TYPE NODEPTR = -NODE;
NODE = PACKED RECORD

FLINK, BLINK : NODEPTR;
PLINK : PACKED ARRAY[1..NPAR] OF NODEPTR;
I,J : 1..MAXI;

IDI,ID2 : CHAR;
REL : REAL;

END;
CRTCOM = (EOS,EOL,UP,DN,RTLTLI);
CHARSET = SET OF CHAR;

VAR ICURJCURIMAX,JMAXNODES : INTEGER;
IJPOS : ARRAY[1..MAXI,1..MAXJ] OF NODEPTR;
COLOR : SCREENCOLOR;
ANSLAB1,LAB2 : CHAR;
AUTO,DATA : BOOLEAN;
DREL s REAL;
CRTINFO . PACKED ARRAY[CRTCOM] OF CHAR;
PREFIXED z ARRAYECRTCOM] OF BOOLEAN;

1 APPENDIX A

UNIT DECLARATION BASICS UNIT

(2 GENERAL USAGE ROUTINES 2)

PROCEDURE CRT(C : CRTCOM);
PROCEDURE BACKUP(OPT : INTEGER);
FUNCTION GETANS(OPT : INTEGER; OKSET vCHARSET) s CHAR;

PROCEDURE GETSTR(OPT :INTEGER; VAR S:STRING; MAX:IMTESER);
FUNCTION GETREL(S : STRING) : REAL;
PROCEDURE DISPLAYAT(OPT : INTEGER; LOC:INTEGER; SzSTRING);
PROCEDURE INSTRUCT;
PROCEDURE AUTOLAB(C : NODEPTR);
PROCEDURE INITNODE(I,J : INTEGER; VAR C z NODEPTR);

(* DISPLAY ROUTINES 2)

FUNCTION XPOS(I : INTEGER) : INTEGER;
FUNCTION YPOS(J : INTEGER) : INTEGER;
FUNCTION CHECKDIS(OPT : INTEGER; C : NODEPTR) : BOOLEAN;
PROCEDURE DCOMPON(C a NODEPTR; MODE : INTEGER);
PROCEDURE DISPLAY;
PROCEDURE POSITION(C a NODEPTR);

(* CURSOR MOVEMENT ROUTINES *)

PROCEDURE UPDOWNO : INTEGER; VAR C : NODEPTR);
PROCEDURE LEFTRIGHT(I a INTEGER; VAR C a NODEPTR);

2 APPENDIX A

GENERAL USAGE ROUTINES BASICS UNIT

IMPLEMENTAT I ON

PROCEDURE CRT;
!(BORROWED FROM DISKIO 8)
($ ACTIONS OCCURS AT THE CURRENT CURSOR POSITION 8)

BEGIN
IF PREFIXED[C] THEN UNITWRITE(I,CRTINFO[LI],1,0,12);
UNITWRITE(1,CRTINFO[CJ, 1,0,12);

END;

PROCEDURE BACKUP;
(S OPT = 1 -> BACKSPACE ON DISPLAY 5)
(S ELSE -> BACKSPACE ON TEXT SCREEN 8)

BEGIN
IF OPT = 0 THEN

BEGIN
MOVETO (TURTLEX - 7, TURTLEY);
WCHAR(" ");
MOVETO(TURTLEX - 7, TURTLEY);

END
ELSE

BEGIN
CRT(LT);
WRITEC" ");
CRT(LT);

END;
END;

3 APPENDIX A

GENERAL USAGE ROUTINES BASICS UNIT

FUNCTION SETA4S;
(*BORROWD FROM DISKID
(SOPT = 1 -> ECHO TO TEXT SCREEN S)
OPT =T0O-> ECHO TO DISPLAY 5

(S ELSE -NO ECHO AT ALL 5

VAR CH :CHAR;
GOOD : BOOLEAN;

BEGIN
REPEAT

READ (KEYBOARD,CH);
IF EOLN(KEYBOARD) THEN CH:=CHR(13);
GOOD:-CH IN OKSET;
IF NOT GOOD THEN WRITE(CHR(7))
ELSE IF CH IN I' '..'Z'3 THEN

BEG IN
IF OPT = 1 THEN WRITE(CH);
IF OPT = 0 THEN WCHAR(CH);

END;
UNTIL GOOD;
BETANS: CH;

END;

4 APPENDIX A

GENERAL USAGE ROUT INES BASICS UN IT

PROCEDURE GETSTR;
(SBORROWED FROIM DISKID 5
(SOPT -0 -> OPERATE ON DISPLAY S)
(SELSE -> OPERATE ON TEXT SCREEN 5

VAR ANS aSTRINGCI];

BEGIN

ANS:='
REPEAT

IF LENGTH(S) = 0 THEN
ANSC1Jz=GETANS(OPT,t' '..*Z',CHR(13)J)

ELSE
IF LENGTH(S) = MAX THEN
ANSE13. =GETANS (OPT, CCHR (8) ,CHR(C13)3

ELSE
ANSC13:=GETANS(OPT,E' 7.. *'V,CHR(8) ,CHR(13)]);

IF ANSE13 IN E' '..'Z'3 THEN
S:=CONCAT (5,ANS)

ELSE
IF ANSE13 = CHR(8) THEN

BEGIN
BACKUP (OPT) ;
DELETE (5,LENGTH(S), 1);

END;
UNTIL ANSEi] CHR(13);

END;

5 APPENDIX A

GENERAL USAGE ROUTINES BASICS UNIT

FUNCTION GETREL;

VAR IJ J INTEGER;
RL : REAL;

BEGIN
RL, =0. 0;
IF SE1] = '1' THEN
RL:=i.O

ELSE
BEGIN

I:=PS('.',S) + 1;
J:=10;
WHILE I < (LENGTH(S) + 1) DO

IF S[I] IN r'o'..'9'] THEN
BEGIN
RL:=RL + (ORD(S[I]) - 48) / J;
J:=J * 10;
I:=I + 1;

END
ELSE

I:=LENGTH(S) + 1;
END;

GETREL: =RL;
END;

6 APPENDIX A

GENERAL USAGE ROUTINES BASICS UNdIT

PROCEDURE DISPLAVAT;
(*OPT - 1 - RESET GRAPHICS SCREEN MESSAGE AREA

BEGIN
UNITCLEAR(1);
IF OPT - I THEN

BEG IN
VIEWPORT(LOCMAXX,0, 10);
FILLSCREEN(BLACK);
PENCOLOR (NONE);
?OVETOCLOC,0);
VIEWPORT(0,NAXX,0,MAXY);

END;
CHARTYPE(1O);
WSTRING(S);

END;

PROCEDURE INSTRUCT;

VAR ANS : CHAR;

BEGIN
TEXTMODE;
ANSrn=GETANS(2,Ep '..'Z'3);
GRAFMODE;

END;

7 APPENDIX A

GENERAL USAGE ROUT INES BAS ICS UN IT

PROCEDURE AUTOLAB;

BEG IN
IF AUTO AND (C".IDl P) THEN
BEG IN

IF LAB2 = '9' THEN
BEGIN
LABI:=SUCC (LAB 1);
IF LABI = 'Z' THEN LAB1:='A';
LAB2:='"O';

END;

LAB2: =SUCC (LAB2);

C'. 1D2z=LAB2;
END;

END;

PROCEDURE INITNODE;

VAR K : INTEGER;

- BEG IN
NODES: =NODES + 1;
NEW(C);
C^.FL INK:=NIL;

C'. BLINK:=NIL;
FOR K:- 1 TO NPAR DO

C**. PLINKI:=N IL;

C^.1D2:=' '

AUTOLAB(C);
C*". Is=I1;
C^.J : J;
C". RELx=DREL;
IJPDSEI,Jhs=C;
IF NODES > NREC THEN

BEGIN
WRITE(CHR(7) ,CHR(7));
DISPLAYAT(1,0,'* OF NODES EXCEED IIAXIII~l');
ANSs=GETANS(2,C' P..'Z'3);

END;
END;

8 APPENDIX A

DISPLAY ROUTINES BASICS UNIT

FUNCTION XPOS;
(* ALLOWS 10 HORI ZONTAL COMPONENTS ON SCREEN *

BEG IN
XPOSz=(I-ICUR)*2B;

END;

FUNCTION YPOS;
(* ALLOWS 10 VERTICAL COMPONENTS ON SCREEN 5

BEG IN
YPOS:=(J-JCUR) *18+18;

END;

9 APPENDIX A

DISPLAY ROUTINES BASICS UNIT

FUNCTION CHECKDIS;
(* OPT =I - FIRST COMP2ONENT -> A NEW DISPLAY *

VAR I,J 2INTEGER;

DEG IN
CHECKDIS: =FALSE;
I:=C .I;
J sn =C,- J;
IF ((I > ICUR + 9) OR CICUR > I))THEN
BEG IN

CHECKDIS: =TRUE;
ICUR:=I - 5;
IF ICUR <= I THEN

ICUR: =1
ELSE

IF ICUR >= MAXI - 10 THEN
ICUR:=MAXI -10;

END;
IF ((J > JCUR + 9)OR (JCUR > J))THEN
BEGIN
CHECKD IS:=TRIJE;
JCUR:=J - 5;
IF JCUR <= 1 THEN

JCUR:=l
ELSE

- IF JCUR >= MAXJ - 9 THEN
JCUR:=MAXJ - 9;

END;
IF OPT I THEN CHECKDIS:-TRUE;

END;

10 APPENDIX A

DISPLAY ROUTINES BASICS UNIT

PROCEDURE DCOMPON;

VAR X,Y,R : INTEGER;
RL s STRING(2];

BEGIN
PENCOLORNENE);
X.=XPOS(C*'. I);
Y:=YPOS(C .J);
IF Y < 11 THEN EXIT(DCOMPON);
MOVETO(X+3,Y);
PENCOLOR (COLOR);
MOVE (21) ;
CHARTYPE (MODE);
MOVETO(X+8,Y+1);
WCHAR(C^.-IDI);
WCHAR(C". 1D2);
MOVETO(X+8, V-i);
R:=ROUND(C".REL* 100);
IF R = 100 THEN RL:='1
ELSE

BEGIN
STR(R,RL);-
IF R < 10 THEN RL:=CONCAT('0',RL);

END;

WSTRING(RL);F

11 APPENDIX A

DISPLAY ROUTINES BASICS UNIT

PROCEDURE DISPLAY;

VAR C zzNODEPTR;
1,J :INTEGER;

PROCEDURE DEXTEND (C : NODEPTR);

VAR NEW : NODEPTR;
X,Y,XNEW,YNEW : INTEGER;

BEGIN
X:=XPOS (C'. I);
Y:=YPOS(C'.J);
NEW3 C-. FLINK;
XNEW:=XPOS (NEW'. I);
YNEWs=YPOS(NEW'.J);
PENCOLOR(NONE);
MOVETO(X+24,Y);
PENCOLOR(COLOR);
MOVETO (XNEW-3, Y);
IF YNEW = Y THEN
MOVETO (XNEWl+3, Y)

ELSE
MOVETO (XNEW-3, YNEW);

END;

12 APPENDIX A

DISPLAY ROUTINES BASICS UNIT

PROCEDURE DASCEND (C :NODEPTR);

VAR MAX :NODEPTR;'
J,X,Y,YMAX : INTEGER;
DONE : BOOLEAN;

BEG IN
MAX:=C;
DONE:=FALSE;

REPEAT
IF C^.PLINKEJ] = NIL THEN DONEu=TRUE
ELSE

BEGIN
IF MAX .J < C .PLINKMJ].J THEN

MAX:=C',.PLINKEJ3;
J:=J + 1;

END;
UNTIL DONE OR (3 = NPAR + 1);
IF J <> 1 THEN
BEGIN

X:=XPOS(C'. I);
Y:=YPOS(C .J);
YMAX: =YPOS (MAX-"'J);
PENCOLORM(ONE);

- MOVETO(X+3,Y);
PENCOLOR(COLOR);
MiOVETO(X+3,YMAX);

END;
END;

13 APPENDIX A

DISPLAY ROUTINES BASICS UNIT

(DISPLAY MAIN BODY *
BEGIN

INITTURTLE;
VIEWORT (0, AXX, 11,IIAXY);
FOR J:1l TO JCUR.9 DO

FOR 1:=l TO ICUR+9 DO
BEG IN

Cz.=IJPUSCI,J];
IF (C <> NIL) THEN

IF C .ID1 <> '8' THEN
BEG IN
DCOMPON(C,5);
DEXTEND (C);
DASCEND(C);

END;
END;

VIEWIORT(0,IIAXX,0,MAXY);
END;

PROCEDURE POSI TION;

VAR IJ : STRIN6[2];

BEGIN
PENCOLORM(ONE);
CHARTYPE(10);
MOVETO(0,0);
IJg= ';
STR(C .J, IJ);
IF C-'.J < 10 THEN IJ:=CONCAT(p ',IJ);
W'STRING(IJ);
WCHAR ('I');
IJ:=' '

IF Cl .I < 10 THEN IJ:=CONCAT(' ',IJ)p
WSTRING(IJ);
WCHAR(' 1);

END;

14 APPENDIX A

MOVEMENT ROUTINES BASICS UNIT

PROCEDURE UPDOWN;
(*J CAN BE POSITIVE FOR UP AND NEGATIVE FOR DOWN $

VAR INEW,JNEW, INC : INTEGER;
DONE : BOOLEAN;

BEGIN

JNEW:=C".J + J
IF JNEWI > MAXJ THEN JNEW:=MAXJ;
IF JNEW < I THEN JNEW:1l;
(* POSITVE IF UP AND NEGATIVE IF DOWN *
IF J > 0 THEN

INC:= 1
ELSE
INC:-l;

DONE: =FALSE;
REPEAT

IF IJPOS1INEW,JNEWJ <> NIL THEN
DONE:=TRUE

ELSE
IF INEW > 1 THEN

IF IJPOSEINEW-1,JNEWJ <> NIL THEN
BEGIN

INEW:=INEW - 1;
DONE:=TRUE;

END
ELSE

IF INEW < MAXI - 1 THEN
IF IJPOSEINEW+1,JNEW] <> NIL THEN
BEGIN

INEW:=INEW + 1;
DONE-.=TRUE;

END;
IF NOT DONE THEN JNEW:=JNEW -INC;

UNTIL DONE;
C:=IJPOS(INEW,JNEW];

END;

15 APPENDIX A

MOVEMENT ROUTINES BASICS UNIT

PROCEDURE LEFTR IGHT;
(S LEFT IS NEGATIVE AND RIGHT IS POSITIVE S)

VAR INEW',JNEW,INC :INTEGER;

DONE z BOOLEAN;

BEGIN
INEW:=C^.I + 1;

JNEW:=C^.J;
IF INEW > IMAX-1 THEN INEW:=IMAX - 1;
IF INEW < 1 THEN INEW:=1;
IF I > 0 THEN

INC:= 1
ELSE

INC :-1;
DONE:=FALSE;
REPEAT

IF IJPOS[INEW,JNEW] <> NIL THEN
DONE. =TRUE

ELSE
IF JNEW < MAXJ THEN

IF IJPDSEINEW,JNEW+13 <> NIL THEN
BEG IN
JNEW:=JNEW + I.;
DONE: =TRUE;

- END
ELSE

IF JNEW > 1 THEN
IF IJPOSEINEW,JNEW-13 <> NIL THEN
BEGIN
JNEW:=JNEW - 1;
DONE: =TRUE;

END;
IF NOT DONE THEN INEW:-INEW -INC;

UNTIL DONE;
C:=IJPOSEINEW,JNEW3;

END;

(UNIT INITIALIZATION PART 8
BEGIN

(S NOTHING TO DO 8
END.

16 APPENDIX A

EXECUTIVE MAIN PROGRAM

(*SS+*) (S TURN COMPILER SWAPPING ON FOR SYMBOL TABLE 5)

PROGRAM SYSREL;

(S THIS PROGRAM PROVIDES THE USER WITH A TOOL TO 5)
(5 GENERATE, EDIT, ANALYZE, AND SAVE RELIABILITY 5)
(5 SYSTEMS. THE SYSTEMS CAN CONTAIN SERIES AND 5)
(5 PARALLEL COMPONENTS, EACH IDENTIFIED WITH A USER S)
(5 SUPPLIED ID TAG AND A CONSTANT RELIABILITY. THE 5)
(S PROGRAM WILL ALLOW A USER TO CONFIGURE A SYSTEM, 5)
(5 DETERMINE ITS RELIABILITY AND THEN CHANGE THE SYSTEM 5)
(S A LA SENSITIVITY ANALYSIS TO DETERMINE METHODS OF 5)
(5 ENHANCING RELIABILITY OR REDUCING THE NUMBER OF S)
(S COMPONENTS FOR THE SAME RELIABLITY. 5)

(5 THE PROGRAM WAS WRITTEN BY CAPT DON TUROS WHILE 5)
(5 A STUDENT AT AFIT AS A THESIS EFFORT. SOME MATERIAL 5)
(S AND ALGORITHMS WERE BORROWED FROM EXAMPLES S)
(5 PRESENTED IN THE APPLE 3(PASCAL OPERATING SYSTEM S)
(5 MANUAL. SPECIFIC MODULES ARE MENTIONED IN LINE. 5)

USES TURTLEGRAPHICS, BASICS;(* GRAPHICS AND USER ROUTINES 8)

(*51 APPLE2:INITSEG.TEXTS) (* INCLUDE INITSEG HERE S)

17 APPENDIX A

EDIT SECMN MAIN PROGRAM

SEGMENT PROCEDURE ED ITSEG (OPT z BOOLEAN);
(*OPT = TRUE ->THEN GRID HAS DATA IN IT 8
(8ELSE ->NO DATA - RUN GENERATE 8

VAR C : NODEPTR;
ANS,NUIM aCHAR;
REM,NI :INTEGER;

PROCEDURE LABLE(C s NODEPTR);

VAR S : STRING;

BEGIN
DISPLAYAT(1,42, 'LABEL->)
IF AUTO THEN
AUTOLAB (C)

ELSE
BEGIN

DISPLAYAT(0,0,' ID=
GETSTR (0,6,2);
IF LENGTH(S) >= 1 THEN

-C-". I D1: =SE 13;
IF LENGTH(S) = 2 THEN

C^. D2:=SE2J
ELSE

C".1D2:=' '

END;
DISPLAYAT(O,0,' REL
(* MAX LENGTH IS 7 DIGITS AND DECIMAL POINT 8
GETSTR (0, S,8) ;
IF LENGTH(S) > 0 THEN

C". REL:=GETREL (5);
DCO#IPON(C,5);

END;

PROCEDURE SERIESW(AR NI aINTEGER; C aNODEPTR) ;FORWARD;

16 APPENDIX A

ED I T SEGMENT MAIN PROGRAM

PROCEDURE PARALLEL (VAR NJ : INTEGER; C s NODEPTR);

VAR IJNINPWIHIILOWJHI,JLOWJLAP : INTEGER;
TODO : ARRAYEI..NPAR] OF NODEPTR;
ABOVE, DONE, FOUND : BOOLEAN;
ANSNUM : CHAR;

PROCEDURE ERRORPAR;

BEGIN
IF C^.J = MAXJ THEN

BEGIN
(* NO ROOM IN COLUMN *)
WRITE (CHR(7) ,CHR(7));
LABLE (C) ;
EXIT (PARALLEL);

END;
IF C^-PLINK[NPAR] <> NIL THEN

BEGIN
(* NO PLINKS LEFT $)
WRITE (CHR(7) ,CHR(7));

l LABLE(C);
EXIT (PARALLEL);

END
ELSE

BEGIN
NP: =O;
WHILE C^.PLINK[NP+1] <> NIL DO NP:=NP + 1;
IF NJ - 1 > NPAR - NP THEN
BEGIN

(* TOO MANY - REDUCE FOR PLINKS *)
WRITE (CHR(7) ,CHR(7));
NJ:=NPAR - NP + 1;

END;
END;

END;

19 APPENDIX A

ED IT SEGMENT MAIN PROGRAM

PROCEDURE ABOVEPAR;

VAR NEW i NODEPTR;

BEG IN

JLAPI =0;

JHIz=C'.J;
JLOW:=C^.J;
ABOVE 3=FALSE;
DONE: FALSE;
REPEAT

1: C'. 1;
J: =J + 1;
FOUND: =FALSE;
(* FIND FIRST COMPONENT ABOVE AND LEFT *
REPEAT

IF IJPOSEIIJ] <> NIL THEN
FOUND: =TRUE

ELSE
I:= 1

UNTIL FOUND OR (1 0);

20 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

IF I = 0 THEN
DONE: =TRUE

ELSE
BEGIN
NEW:=IJPOS[I,J];
IF NOT ABOVE THEN

(* DETERMINE HOW MUCH ROOM AVAIL *)

IF ((NEW'.I = C^.I) AND (NEW^.J = J)) OR

(NEW".FLINK^.I > C-.I) THEN

BEGIN
ABOVE:=TRUE;
JLAP:=C-.J + NJ - J;
JLOW:=J;

END;
(S FIND RIGHTMOST COMPONENT TO MOVE UP 5)

WHILE NEW-.FLINK-J = J DO
NEW:=NEW^.FLINK;

IF NEW".I > IHI THEN IHI:=NEW^-I;

IF NEW^.FLINK-.I > C^.I THEN
BEGIN
JHI:=NEW'.J;

(* FIND LEFTMOST TO MOVE UP 5)

NEW:=IJPOS[I,J];

WHILE NEW^.BLINK'.J = J DO

NEW:=NEW'.BLINK;
IF NEW'.I < ILOW THEN ILOW:=NEWN.I;

END;
END;

UNTIL DONE OR (J = MAXJ);

END;

21 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

PROCEDURE CHECKPAR;

BEGIN
IF DONE THEN

(* NOT ENOUGH ROOM TO FIT ALL - REDUCE INPUT 8)
BEGIN

IF JHI + JLAP > MAXJ THEN
BEG IN
WRITE(CHR(7) ,CHR(7));
JLAP:=MAXJ - JHI;

NJ:=JLAP + JLOW - C* . J ;

END;
IF JHI + NJ - I > MAXJ THEN
BEGIN
WRITE(CHR(7) ,CHR(7));

NJ:=MAXJ - JHI + 1;
END;

END
ELSE

BEGIN
IF (JLOW - C^.J = 1) AND (JHI - MAXJ) THEN
BEGIN

(* NO ROOM PERIOD $)

WRITE (CHR(7) ,CHR(7));
LABLE(C);
EXIT(PARALLEL);

END;
IF ABOVE THEN

(* LIMITED ROOM - REDUCE $)
BEGIN

IF JHI + JLAP > MAXJ THEN
BEGIN

WRITE(CHR(7) ,CHR(7));
JLAP:=MAXJ - JHI;
NJ:=JLAP + JLOW - C ^ . J ;

END;
END

ELSE
IF JLOW + NJ - I > MAXJ THEN
BEGIN
WRITE(CHR(7) ,CHR(7));
NJ:=MAXJ - JLOW + 1;

END;
END;

END;

22 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

PROCEDURE SHIFTPAR;

BEGIN
FOR Js=JHI DOWNTO JLOW DO
FOR I.=ILOW TO IHI DO

IF IJPOSEI,J] <> NIL THEN
BEG IN

IJPDSEI,J+JLAP]:=IJPOSEI,J];
IJPOSEI,JV.J:=J + JLAP;
IJPOSEI,JJ:=NIL;

END;
END;

PROCEDURE INSERTPAR;

VAR NEW :NODEPTR;

BEGIN
NEW:=NIL;
INITNODE(C". I,C-**.J+J-NP+1,NEW);
C' .PLINKEJ+13]: =NEW;
NEW-*".FL INK: =C'.FL INK;
NEW,* BLINK: =C;
TDDOEJ-NP+2] :=NEW;
(* SET TOP COMPONENT FOR PRINTER 5
IF NEW-^.J > JMAX THEN JMAX:=NEW,*.J;

END;

23 APPEND IX A

EDIT SEGMENT MAIN PROGRAM

(PARALLEL EXECUTIVE ROUTINE 5
BEG IN
ERRORPAR;

ADOVEPAR;

CHECKPAR;

IF JLAP > 0 THEN SHIFTPAR;

TODO 12: =C;
FOR J:=NP TO NP + NJ - 2 DO

INSERIPAR;

FOR J:=1 TO NJ DO
BEG IN

IF CHECKDIS(JTODO[J]) THEN DISPLAY;

DCOMPON(TODOEJ], 10);
POSITION(TODOCJ]);
DISPLAYAT(1,42,'PARALLEL -> S*,LN ->')
REPEAT

(* PARALLEL MENU 5[NUM:='B';
REPEAT

UNTIL ANS <> CHR(27);
IF ANS IN EPS73 THEN
BEGIN

NUJM:=GETANS (0, '2'. .CHR(NSER+48) ,IHR(8)3);
IF NUMl <> CHR(8) THEN
NI:=ORD(NUM) -48

ELSE
BACKUP(0) ;

END;
UNTIL NUMl <> CHR(8);
CASE ANS OF

'S' : SERIES(NITODOrJJ);
'L' s LABLE(TODOEJ3);

END;
DCOMPON(TODOEJ395);

END;
END;

24 AP~PENDIX A

EDIT SEGMENT MAIN PROGRAM

PROCEDURE SERIES;

VAR I,J,ILAP,NJ :INTEGER;
TODD : ARRAY(1.. NSER] OF NODEPTR;
NUM,ANS s CHAR;

PROCEDURE CHECKSER;

0- BEGIN
IF ILAP + IMAX > MAXI - 1 THEN

IF C .FLINK^.I - C-.1 I THEN
BEGIN

(* NO ROOM AT ALL 8
WRITE (CHR(7) ,CHR(7));
LABLE (C);
EXIT (SERIES) ;

END
ELSE

BEGIN
(* LIMITED ROOM - REDUCE 8
WRITE(CHR(7) ,CHR(7));
NI:=MAXI - 1 - IMAX + C .FLINK^.I -C .l 1;
ILAPz=C .l + NI - .FLINK-.I;

END;
ENID;

25 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

PROCEDURE SHIFTSER;

VAR LAST g INTEGER;

BEG IN
LAST:=C'.FLINK . I;
FUR l:=IMAX DOWNTO LAST DO

FOR J:1l TO MAXJ DO
IF IJPOSEI,JJ <> NIL THEN

BEGIN
IJPOSLI+ILAP,Jl:=IJPOSEI,J];
IJPOSEI,J3'.I:=I + ILAP;
IJPOSEI,J]:=NIL;

END;
IMAX:=IMAX + ILAP;

END;

PROCEDURE I NSERTSER;

VAR NEW : NODEPTR;

BEGIN
NEW:=NIL;
INITNODE(C"'. I+I-1,C'.J,NEW);
NEW. FL INK : =C'. FL INK;
IF NEW'.FLINK'.J = NEW".J THEN

NEW'. FL INK^. BLINK: =NEW;
NEW'. BLINK:=C;
CI. FL INK:=NEW;
TODOC 13:=NEW;

END;

26 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

CSERIES EXECUTIVE ROUTINE 5
BEG IN

ILAP:=C .l + NI - C .FLINKX*I;
(POSITIVE IF COMPONENT OVERLAP 5

CHECKSER;

IF ILAP > 0 THEN SHIFTSER;

TODOEC13] zC;
FOR 1:= NI DOW#NTO 2 DO

INSERTSER;

FOR 1:= 1 TO NI DO
BEGIN

IF CHECKDIS(I,TODOEI]) THEN DISPLAY;
DCOMPON(TDDO I], 10);
POSITIONCTODOC I]);

g ~DISPLAYAT(1,42,'SERIES -> P*,L,N -)
REPEAT

(* SERIES MENU 5
NUM:='6';
REPEAT

ANS:-=GETANS(0,EUP', 'L', 'N' ,CHRC27)]);,
IF ANS = CHR(27) THEN INSTRUCT;

UNTIL ANS <> CHR(27);
IF ANS IN C'P'J THEN
BEG IN

NUM.GETANS(0,E'2'..CHR(NP~i-i4;).CI.lk8)]);
IF NUM <> CHR(8) THEN
NJ:=ORD(NUM) - 48

ELSE
BACKUP(0);

END;
UNTIL NUM <> CHR(8);
CASE ANS OF

'P' : PARALLEL(NJ,TODO[I]);
'L' : LABLECTODO[13);

END;
DCOMPON(TODOE1],5);

END;
END;

27 APPENDIX A

Ei)IT SEGMENT MAIN PROGRAM

PROCEDURE REMOVE(VAR C : NODEPTR);

VAR K s INTEGER;

BEGIN
IF C'.BLINK^.FLINK = C THEN

BEGIN
IJPOS[C ^ .I,C-J]:=NIL;
C". BLINK". FLINK: =C ^ . FLINK;

END
ELSE
FOR K:= NPAR DOWNTO 1 DO

IF C'.BLINK^.PLINK[K] = C THEN
BEGIN

IJPOSEC ^ . I, C-. J3]:=NIL ;

C'. BLINK^ .PLINK[K]: =NIL;
END;

END;

PROCEDURE DEFAULT;

VAR S : STRING;

BEGIN
DISPLAYAT(1,O,'CHANGE DEFAULT RELIABILITY =
GETSTR (0, S, 8) ;
IF LENGTH(S) > 0 THEN

DREL:=GETREL(S);

END;

28 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

PROCEDURE CHANGE (C : NODEPTR);

VAR ANS, NUN : CHAR;
NI : INTEGER;

BEGIN
REPEAT

DCOMPON(C, 10);
POSITION (C) ;
DISPLAYAT(1,42..'CHANGE ->P#,S*,L,D,T,Q2 ->';
REPEAT

(8CHANGE MENU 8
NU: =' 6';
(* INSURE SERIES TO ALLOW PARALLEL 8
REPEAT

IF (C".FLINK^".J = C-.J)DR(C .BLINK .J = C .J) THEN
ANS: ='P'

ELSE
ANS:='S';

ANS:=GETANS(0,(ANS,'S' ,'L','D' ,'T' ,'X ,CHR(27)]);,
IF ANS = CHR(27) THEN INSTRUCT;

UNTIL ANS <> CHR(27);
IF ANS IN ['P','S'] THEN
BEGIN

IF ANS = 'P' THEN
NUN: =CHR (NPAR+48)

ELSE
NUN: .CHR (NSER+48);

NUN:=GETANSCO, ('2'. .NU1M,CHR(8)]);
IF NUN <> CHR(8) THEN
NI:=ORD(NUM) - 48

ELSE
BACKUP(0);

END;
UNTIL NUN <> CHR(8);
CASE ANS OF

'Pp : PARALLEL(NI,C);
'S' : SERIES(NI,C);
ILI : LABLE(C);
'D' : DEFAULT;
'T' : AUTO:=NOT AUTO;

END;
UNTIL ANS IN E'Q','P'.'S'9'L'3;

END-,

29 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

($ EDIT EXECUTIVE ROUTINE 5)
BEGIN
C:=IJPOS[1,13;

REM: =I;
IF NOT OPT THEN
BEGIN

(* GENERATE SEQUENCE 5)

DISPLAY;
DCOPON(C, 10);
POSITION(C) ;

DISPLAYAT(1,42,'GENERATE -> P*,S* -> ");
REPEAT
REPEAT

j

ANS:=GETANS(0, ['P', 'S' ,CHR(27)]);
IF ANS = CHR(27) THEN INSTRUCT;

UNTIL ANS <> CHR(27);
IF ANS IN ['P'] THEN
NUN: CHR (NPAR+48)

ELSE
NUN: =CHR (NSER4e48);

NUM: =GETANS (0, ['27. NUN, CHR (8)]);
IF NUN = CHR(8) THEN BACKUP(O);

UNTIL NUM <> CHR(4);
NI:=ORD(NUM) - 48;

CASE ANS OF
'P' : PARALLEL(NI,C);
'S" : SERIES(NI,C);

END;
END;

30 APPENDIX A

EDIT SEGMENT MAIN PROGRAM

*ED I T SEQlUENCE $
REPEAT

IF CHECKDIS(REM,C) THEN DISPLAY;
REM: =0;
DCOMPON(C, 10);
POSITION (C);
DISPLAYAT(1,42,'EDIT -> R,C,I*,J*,K*,IW,H,g >)
REPEAT

(* EDIT MENU S)
NUN: '6';
REPEAT

ANSt=CHR(27);
ANS:-GETANS(0, ('R' , C',' ', J' , K', 'N', 'H', '9',ANS3) ;
IF ANS = CHR(27) THEN INSTRUCT;

UNTIL ANS <> CHR(27);
IF ANS IN E'I' ,'J', 'K','N' 3 THEN
BEGIN
NU#:=GETANS (0, ('1'.. '9' ,CHR (8)]);
IF NUM <> CHR(8) THEN
NI:--ORD(NUM) - 48

ELSE
BACKUP (0);

END;
UNTIL NUM <> CHR(8);
DCOMPON(C,5);
CASE ANS OF

'I' : UPDOWN(NI,C);
'J' : LEFTRIGH1(-NI,C);
'K' : LEFTRIGHT(NIC);
'N' UPDOWN(-NI,C);
'R' .REMOVE(C);
'C' :CHANSE(C);
'H' C:=IJPOSC1,1];

END;
IF ANS ='R' THEN

BEGIN
REM:=1;
C:=C'".BLINK;
IF C = NIL THEN
Cz=IJPOSEI, 1];

END;
UNTIL ANS IN ('0'];
DATA. =TRUE;

END;

31 APPENDIX A

EXECUTIVE MAIN PROGRAM

(*$I APPLE2sANALSEG.TEXT*) (*INCLUDE ANAL SEGMENT HERE 5

(MAIN PROGRAM EXECUTIVE 5
BEGIN

INITSEG(TRUE);
EDXTSEG(DATA);
REPEAT

(* MAIN MENU 5
IF DATA THEN
BEGIN
DISPLAYAT(1,O,'-> E)DIT,A)NAL,P)RINT,S)TORE,I)NIT,Q2)UIT');
REPEAT

ANS:=CHR(27);
ANS:=GETANS(O, ['E' ,'A', 'Ps'S'', 'I', '0',ANS]) ;
IF ANS = CHR(27) THEN INSTRUCT;

UNTIL ANS <> CHR(27);
END

ELSE
ANSI ='El;

CASE ANS OF
'E' : EDITSEI3(DATA);
'A' : ANALSEG(1);
'P' : ANALSEG(2);
'S' : ANALSEGC3);
'I' : INITSEG(FALSE);

END;
UNTIL ANS = 'Q';

GOTOXY(0,O);
CRT CEOS);
GOTOXY (0, 15);
WRITELN('MEIORY AVAILIBLE -',MEIIAVAIL);

END.

32 APPENDIX A

INITIALIZE SEGMENT MAIN PROGRAM

(S *8)

(S THIS SEGMENT PROVIDES FOR ALL THE INITIAL- 5)
(S IZATION OR CLEARING OF THE DATA IN THE GRID. S)
(S THE GETCRT PROCEDURE PROVIDES TERMINAL INDE- 5)
(S PENDENT CONSOLE CONTROL. THE EXECUTIVE IS 5)
(S RESPONSIBLE TO PROVIDE ALL THE DEFAULTS THE 5)
(S PROGRAM NEEDS. THE GETDATA STUB IS PROVIDE TO 5)
(S ALLOW FOR INTERACTION WITH A DISK FILE IN THE S)
(S FUTURE.

SEGMENT PROCEDURE INITSEG(OPT : BOOLEAN);
(S OPT = TRUE -> INITIAL TIME IN ROUTINE 5)
(S ELSE -> REINITIALIZE POSSIBILITIES 5)

VAR S : STRING;
ANS : CHAR;

PROCEDURE GETCRT;
(* CODE USED FROM DISKIO PROGRAM 5)

VAR IBYTE z INTEGER;

BUFFER s PACKED ARRAY[O..511] OF CHAR;
F i FILE;

BEGIN
RESET(F,'SYSTEM. MISCINFO');
I:=BLOCKREAD(F, BUFFER, 1);
CLOSE(F);
BYTE:=ORD(BUFFER[72]);
CRTINFO[LI] :=BUFFER[62]; PREFIXEDELI] :=FALSE;
CRTINFO[EOS]:=BUFFERE64]; PREFIXED[EOS]:=ODD(BYTE DIV 8);
CRTINFO[EOL]:=BUFFER[65]; PREFIXEDEEOL3:=ODD(BYTE DIV 4);
CRTINFO[RT] :=BUFFER[66]; PREFIXED[RT] :=ODD(BYTE DIV 2);
CRTINFO[UP] :=BUFFER[67]; PREFIXED[UP] :=ODD(BYTE);
CRTINFO[LT] :=BUFFER[68]; PREFIXED[LT]:=ODD(BYTE DIV 32);
CRTINFO[DNJ :=CHR(1O); PREFIXED[DN] :=FALSE;

END;

33 APPENDIX A

INITIALIZE SEGMENT MAIN PROGRAM

PROCEDURE PROMPTAT(Y : INTEGER; S a STRING);
(* BARROWED FROM DXSKIO *)

BEGIN
UNITCLEAR(1);
GOTOXY(O,Y);
WRITE(S);
CRT(EOL);

END;

PROCEDURE INTRO;

BEGIN
GOTOXY(0,0);
CRT(EOS);
PROMPTAT(1,'RELIABILITY SYSTEM GENERATION PROGRAM');
PROMPTAT(3,'SERIES AND PARALLEL STRUCTURES ONLY');
PROMPTAT(4,'A MAX OF 6 COMPONENTS MAY BE IN PARALLEL');
PROMPTAT(5,'THE SYSTEM MAY NOT EXCEED A 20 X 20 SIZE');
PROMPTAT(6,'100 COMPONENTS MAXIMUM');
PROMPTAT(7,'CURSOR COMPONENT IS WHITE ON BLACK');
PROMPTAT(10,'DEFAULT FOR AUTOLABELLING IS ON');
PROMPTAT(11,'DEFAULT FOR RELIABILITY IS 0.5');
PROMPTAT(13,'<ESC> TO SHOW INSTRUCTIONS');
PROMPTAT(14,'< <- > WORKS FOR A MULTI-KEYSTROKE INPUT');
PROMPTAT(15,'<RETURN> GIVES CURRENT VALUE FOR LABEL');
PROMPTAT(17,'SINGLE BEEP - INPUT ERROR');
PROMPTAT(18,'DOUBLE BEEP - LIMIT ERROR');
PROMPTAT(21,'ANY KEY TO CONTINUE');
PROMPTAT(22,'<RETURN> TO CHANGE DEFAULTS');
IF NOT OPT THEN
PROMPTAT(23,'<ESC> TO RETURN TO MAIN MENU');

END;

34 APPENDIX A

INITIALIZE SEGMENT MAIN PROGRAM

PROCEDURE INITDISPLAY;

VAR I,J : INTEGER;
C : NODEPTR;

BEGIN
C: =NIL;
INITTURTLE;
VIEWPORT(O,NAXXO,MAXY);
COLOR:=WH ITE;
DISPLAYAT(1,O,'PLEASE WAIT -INITIALIZING SYSTEM');
FOR 1:=l TO MAXI DO

FOR J:= 1 TO MAXJ DO
IJPOSEI,J3:=NIL;

I CUR 3=1;
JCUR:1;*
IMAX:-=2;
JMAX:=l;

* INITNODE(2, 1,C);

C- . REL: = 1.* 0;
INITNODECI, 1,C-.BLINK);
C,'. DLI NKI'*FL INK:=C;

END;

PROCEDURE GETDATA;

VAR ANS s CHAR;

BEG IN
PROMPTAT(15, 'ROUTINE NOT IMPLEMENTED');
PROMPTAT(17,'ANY KEY TO CONTINUE');
ANS:=GETANS(1,E P''. .'Z' 3);
DATA: =FALSE;
INITDISPLAY;

END;

35 APPENDIX A

INITIALIZE SEGMENT MAIN PROGRAM

PROCEDURE INFO;

BEGIN
GOTOXY(O,O);
CRT(EOS);
PROMPTAT(O,'E)DITING PROCESS COMMANDS');
PROMPTAT(I,'GEN P6 -> * OF PARALLEL COMPONENTS');
PROMPTAT(2,' S* -> * OF SERIES COMPONENTS');
PROMPTAT(3,' L -> LABEL CURRENT COMPONENT');
PROMPTAT(4," N -> MOVE TO NEXT COMPONENT');
PROMPTAT(5,'EDIT R -> REMOVE A COMPONENT');
PROPTAT(6,' C -> CHANGE A COMPONENT');
PROMPTAT(7," Pt -> AS ABOVE');
PROMPTAT(8,' St -> AS ABOVE');
PROMPTAT(9,' L -> AS ABOVE');
PROMPTAT(10,' 0 -> DEFAULT CHANGE');
PROMPTAT(11,' T -> TOGGLE AUTOLABELLING');
PROMPTAT(12,' 0 -> QUIT CHANGE');
PROMPTAT(13,' It/M# -> GO UP/DOWN 6 LOCATIONS');
PROMPTAT(14,' J#/K* -> GO LEFT/RISHT * LOCATIONS');
PROMPTAT(15,' H -> GO TO LOWER LEFT LOCATION');
PROMPTAT(16,' 0 -> RETURN TO MAIN MENU');
PROMPTAT.(17,'A)NALYZE GRID RELIABILITY');
PROMPTAT(18,'P)RINT GRID TO PAPER');
PROMPTAT(19,'S)TORE GRID TO DISK');
PROMPTAT(20,'I)INITIALIZING PROCESS');
PR0NPTAT(21,'Q)UZT PROGRAM');
PROMPTAT(23,'ANY KEY TO RETURN');

END;

36 APPENDIX A

INITIALIZE SEGMENT MAIN PROGRAM

(INITSEG EXECUTIVE ROUTINE 5
BEGIN

IF OPT THEN SETCRT;
INTRO;
TEXTMODE;
IF OPT THEN

ANS: =CHR (13)
ELSE
ANS:=CHR(27);

ANS:=GETANS(1, U' '. .'Z' ,CHR(13) ,ANS]);
IF ANS = CHR(27) THEN
BEGIN

GRAFMODE;
IWNO;
EXIT(INITSEG);

END;

DREL: =0.5;
LAB1:='A';
LAB2s=' ';
NODES: =0;
AUTO:=TRUE;
DATA:=FALSE;

IF ANS = CHR(13) THEN
BEGIN

GOTOXY (0, 0);
CRT CEOS);
PROMPTAT(15,'AUTOLABELLING (Y OR N)=
AUTO:=(GETANSC1,('V' , 'N']) IN C'Y'3);
PROMPTAT(15,-CHANGE THE DEFAULT RELIABILITY?');
PROMPTAT(16,'ENTER <RETURN> FOR NO CHANGE OR');
PROMPTAT(17,'ANY * FROM 1 TO .0000 : REL-
GETSTR (1, S,8) ;
IF LENGTH(S) > 0 THEN DREL:=GETREL(S);

END;
GOTOXY(0,0);
CRT(CS);

PROMPTAT(15,'GET DATA FROM DISK? (Y OR N)
DATA:=(GETANS(1, C'Y', 'N']3) IN E'Y']);
IF DATA THEN
GETDATA

ELSE
IN ITD ISPLAY;

INFO;
END;

37 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

(8 $)

(8 THIS SEGMENT PROVIDES THE AUTOMATED $)
(S EQUATIONS TO DO THE RELIABILITY CALULATIONS. 8)
(S THE STORDATA STUB PROVIDES FOR THE INTERFACE TO 8)
(8 DISK THAT WILL BE IMPLEMENTED IN THE FUTURE, . 8)
(8 THIS ROUTINE ALSO PROVIDES THE PROCEDURE TO 8)

(8 PRINT THE SYSTEM TO HARD COPY. 8)
(8 8)

SEGMENT PROCEDURE ANALSEG(OPT : INTEGER);
(8 OPT = 1 -> CALL ANALYZE ROUTINE 8)
(8 OPT = 2 -> CALL PRINT ROUTINE 8)
(8 OPT = 3 -> CALL STORDATA ROUTINE 8)

VAR REL a REAL;

PROCEDURE PRINT(OPT : BOOLEAN); FORWARD;

PROCEDURE ANALYZE(OPT : BOOLEAN);
(8 OPT = TRUE -> CALL THE PRINT ROUTINE 8)
(8 ELSE -> CALLED FROM PRINT ROUTINE 8)

VAR RL a STRING[4];
I,J INTEGER;

PROCEDURF ANALPAR(VAR I,J : INTEGER; VAR REL:REAL);FORWARD;

38 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

PROCEDURE ANALMULT(VAR IJ : INTEGER; VAR REL " REAL);

VAR R : REAL;
C : NODEPTR;

BEGIN
C:=IJPOS[I,J];
IF C'.PLINKE1] = NIL THEN
BEGIN

(* NEXT IS SINGLE COMPONENT 5)

REL:=REL * C ^ .REL;
1:=C'.FLINK^. I;
J: =C".FLINK^.J;

END
ELSE

BEGIN
(5 NEXT IS PARALLEL STRUCTURE 5)
(5 ANALPAR UPATES I,J AND RELIABILITY 5)
R:=I;

ANALPAR(I,J,R);

REL:=REL * R;
END;

END;

PROCEDURE ANALSER(VAR IJ INTEGER; VAR REL : REAL);

VAR ROW 3 INTEGER;

BEGIN
ROW: =J;
REL: =1;
(* ANALMULT UPDATES IJ AND RELIABILITY 5)
REPEAT
ANALMULT(I,J,REL);

UNTIL J < ROW;
END;

39 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

PROCEDURE ANALPAR;

VAR SERREL : ARRAYlI..NPAR] OF REAL;
SEREND : ARRAYEI..NPAR] OF INTEGER;
K,HINJROI a INTEGER;
R % REAL;
C % NODEPTR;
DONECLOSE : BOOLEAN;

BEGIN
(* SERREL HAS SERIES RELIABILITY $)
($ SEREND HAS LAST SERIES COMPONENT LOCATION)
HI:=I;
C:=IJPOS[IJ];
I:=C^.FLINK^.I;

J:=C^.FLINK^.J;
REL:=C-.REL;
DONE:=FALSE;
NJ:=I;
REPEAT

(* CHECK FOR PARALLEL STRUCTURES *)
IF C^.PLINK[NJ] = NIL THEN
DONE:=TRUE

ELSE
BEGIN

SERREL[NJ]:=O.O;
SERENDENJ]:=HI;
NJ:=NJ + 1;

END;
UNTIL DONE OR (NJ > NPAR);
NJ:=NJ - 1;

(* DETERMINE SERIES RELIABILITY U
FOR K:=I TO NJ DO

BEGIN

ROW:=C^.PLINK[K]^.J;
ANALSER(SEREND[K],ROWSERREL[K]);
IF SERENDEK] > HI THEN HI:=SEREND[K];

END;

40 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

(DETERMINE PARALLEL RELIABILITY 5
DONE:=FALSE;
REPEAT

C:=IJPDSCI,JJ;
CLOSE. FALSE;
FOR K:=l TO NJ DO

IF I = SERENDEK] THEN CLOSE:=TRUE;
(SCLOSE = TRUE.-> CLOSE A PARALLEL STRUCTURE 8

IF CLOSE THEN
BEGIN

(DETERMINE PARALLEL BASE RELIABILITY 5
FOR Kg1l TO NJ DO

IF I = SERENDEK] THEN
BEG IN
R:=R * (1 - SERREL[K]);
SERENDEK]. =0;

END;
(PARALLEL RELIABLITY EQUATION 5

REL:=l - (1 - REL) * R;
IF I = HI THEN DONE. =TRUE;

END
ELSE

ANALMULT(I,J,REL);
UNTIL DONE;

END;

41 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

(ANALYZE EXECUTIVE ROUTINE 8
BEG IN
DISPLAYAT(1,0,-PLEASE WAIT -ANALYZING rHE SYSTEM-);

Jg=l;
REPEAT
ANALMULT(I,J,REL);

UNTIL I >= IMAX;
DISPLAYATC1,0,'RELIABILITY
(* 10000 TO GIVE 4 DIGITS 8
I:-ROUND(REL * 10000);
IF I = 10000 THEN

WSTRING(' 1.0')
ELSE

BEG IN
STR(I,RL);
IF I < 1000 THEN RL:=CONCAT('0',RL);
IF I < 100 THEN RL%=CONCAT('0',RL);

U IF I < 10 THEN RL:=CONCAT('0',RL);
WCHAR ('.');
NSTRING(RL);

END;
IF OPT THEN
WSTRING(' - <RET> FOR PRINT')

ELSE
WSrRING(' - ANY KEY');

IF (GETANS(2,(' '..'Z',CHR(13)]) IN CCHR(13)]) AND OPT THEN
PRINT (FALSE) ;

END;

42 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

PROCEDURE PRINT;
(S OPT = TRUE -> CALL ANALYZE ROUTINE $)
(S ELSE -> CALLED BY ANALYZE ROUTINE 5)

VAR LEFT,RIGHT INTEGER;
ANS s CHAR;
P : TEXT;
S : STRING;

PROCEDURE OUT(TOP, BOT,LEFT,RIGHT a INTEGER);

VAR I,J,K : INTEGER;
C 2 NODEPTR;
B8 : STRING[8];

PROCEDURE PAROUT (OPT : INTEGER);
(S OPT = ODD -> FIRST LINK OF POSSIBLE PAIR 5)
(S OPT = EVEN -> SECOND LINK OF PAIR 5)

BEGIN
FOR J:=LEFT TO RIGHT DO

BEGIN
C:=IJPOSJ,3 I];
IF C = NIL THEN
WRITE (P, B8)

ELSE
BEGIN
C:=C ^ .PLINK[OPT;
IF C = NIL THEN
WRITE (P, B8)

ELSE
IF ODD(OPT) THEN
WRITE(P,' ^',C^.J:2,' ")

ELSE
WRITE(P,ND /,C^.,2 " 1);

END;
END;

ENDI

43 APPENDIX A

-I-~-~

ANALYZE SEGMENT MAIN PROGRAM

(S PROCEDURE OUT MAIN BODY .*)
BEG IN

Bes='
(WRITE - NO CR OR LF 8
(WRITELN - CR AND LF 8

FOR Is=TOP DOWNTO DOT DO
BEGIN

(* ROW/COL POSITION 8
FOR J:=LEFT TO RIGHT DO

BEGIN
C:=IJPOS[J, IJ;
IF C = NIL THEN
WRITE (P, DO)

ELSE
WRITE(P,' 8 ,C-.J:2, 'I',C . 1:2,'')

END;
WRITELNCP);
(* RELIABILITY *.IH# 8)
FOR Ju=LEFT TO RIGHT DO
BEG IN

C:=IJPOSEJ, I];
IF C - NIL THEN
WRITE (P, 88)

ELSE
WRITE(P,C'".REL:7:4,' ');

END;
WRITELNCP);
(8 ROW/COL OF FORWARD LINK *
FOR J:=LEFT TO RIGHT DO

BEG IN
C: IJPOS(J, 13;
IF C -NIL THEN
WRITE (P, 88)

ELSE
BEG IN

C: =C^.FLINK;
IF C = NIL THEN
WRITE (P, DO)

ELSE
WRITE(P, * >' ,C^.J:2, 'I',C'. 1:2,'')

END;
END;

WRITELN(P);

44 APPENDIX A

ANALYZE SEGMENT "AIN PROGRAM

(ROW/COL OF BACK LINK 8)
FOR J:-LEFT TO RIGHT DO

BEG IN
C:-IJPOSEJ, I];
IF C = NIL THEN
WRITE (P, B8)

ELSE
BEG IN

C:=C-. BLINK;
IF C = NIL THEN
WRITE (P, B8)

ELSE
WRITE(P,' <',C",.J:2, ',C-'*.132,' 1);

END;
END;

WRITELN(P);
(* ROW OF PARALLEL LINKS - SAME COLUMN 8

REPEAT
IF K <= NPAR THEN

PAROUT(K);
(CR BUT NO LF FOR EVEN PLINK 8

(S CHR(13) ALWAYS HAS LF SO MUST USE 8
(* CHR(141) IN PASCAL *
WRITE(P,CHR(141));
IF K + I <= NPAR THEN

PAROUT(K+1);
WRITELN(P);
K:=K + 2;

UNTIL K > NPAR;
(BLANK LINE BETWEEN ROWS 8

WRITELN(P);
END;

END;

45 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

(PRINT EXECUTIVE ROUTINE S)
BEG IN

REWRITE(P, 'PRINTER:');
DISPLAYAT(1,0,'-ENTER PRINT TITLE -)
GETSTR (0,5, 20) ;
IF LENGTH(S) - 0 THEN
S:=CONCAT(' TEST SYSTEM ')p

IF OPT THEN
BEG IN

DISPLAYAT(1,0,'ANALYZE SYSTEM (Y OR N) -)
ANS:=GETANS(0, C'Y', 'N' ,CHR(27) 3);
IF ANS IN C'V'3 THEN
ANALYZE CFALSE)

ELSE
IF ANS = CHR(27) THEN

EN;EXITCPRINT);

gDISPLAYAr(1,0,'PLEASE WAIT - PRINTING GRID-);

REPEAT
IF IlIAX - 1 <= LEFT + 9 THEN
RIGHT:=IMAX - 1

ELSE
RXGHTx=LEFT + 9;

WRITE(P,' RELIABILITY SYSTEM: ',S);
WRITELN(P,'- RELIABILITY = ,REL:7:4);
WRITELN(P);
OUJT(JMAX, 1,LEFT,RI6HT);
PA6E(P);
LEFT:=LEFT + 10;

UNTIL LEFT > IMAX -1;

CLOSE (P);
END;

46 APPENDIX A

ANALYZE SEGMENT MAIN PROGRAM

PROCEDURE STORDATA;

VAR ANS x CHAR;

BEGIN
DISPLAYAT(1,0,'ROUTINE NOT IMPLEMENTED -ANY KfY');
ANS:-GETANS(2,[* '..'Z'J)l

END;

(ANALSEG EXECUTIVE ROUTINE 8
BEG IN

REL- =1.0;
CASE OPT OF

1 a ANALYZEC(TRUE);
2 : PRINT(rRUE);
3 s STORDATA;

END;
END;

47 APPENDIX A

Vita

Donald R Turos, Jr was born in Cleveland, Ohio and

raised on the San Francisco peninsula. He attendedi the Air

Force Academy and received a Bachelor of Science in

Computer Science and his regular commission in the Air

Force on 1 June 1977. He served at the Tactical Fighter

Weapons Center Range Group, Nellis AFB, Nevada until

entering the Air Force Institute of Technology in June of

1980. During his tour at Range Group, he was responsible

for data reduction software for the Nellis Range Complex in

support of any range activity and, in particular the

Redflag exercises.

wILMEI

